
ISSN 2076-5851. Вісник Черкаського університету. Випуск №1. 2017 

 22 

УДК 538.9 PACS 83.50.-v, 81.40.Jj, 62.20.F-,  

46.25, 46.25.-y, 46.35.+z,  

83.50.-v, 03.65.Pm 

 

 

Marek Danielewski
1
, Lucjan Sapa

2 

1Faculty of Materials Science and Ceramics, AGH University of Science and Technology 
Mickiewicza 30, 30-059 Kraków, Poland. E-mail: daniel@agh.edu.pl 

2Faculty of Applied Mathematics, AGH University of Science and Technology 

 

NONLINEAR KLEIN-GORDON EQUATION  

IN CAUCHY-NAVIER ELASTIC SOLID 

 

We show that the quaternionic field theory can be rigorously derived from the classical 

balance equations in an isotropic ideal crystal where the momentum transport and the field 

energy are described by the Cauchy-Navier equation. The theory is presented in the form of 

the non-linear wave and Poisson equations with quaternion valued wave functions. The 

derived quaternionic form of the Cauchy-Navier equation couples the compression and 

torsion of the displacement. The wave equation has the form of the nonlinear Klein-Gordon 

equation and describes a spatially localized wave function that is equivalent to the particle. 

The derived wave equation avoids the problems of negative energy and probability. We show 

the self-consistent classical interpretation of wave phenomena and gravity.   

Keywords: quantum wave, quaternion algebra, Klein-Gordon equation, gravity. 

 

1. Introduction 

In 1821 Navier formulated the general theory of elasticity [1], “A Dynamical Theory of 

the Electromagnetic Field” was published by Maxwell in 1856 [2]. The hypothesis that we 

make use of in this work can be found in his paper. Let us begin with the well-known 

Maxwell remark on the ether [2]:  

“On our theory it (energy) resides in the electromagnetic field, in the space 

surrounding the electrified and magnetic bodies, as well as in those bodies themselves,… may 

be described… according to a very probable hypothesis, as the motion and the strain of one 

and the same medium (elastic ether)”. 

In the almost unnoticed part of his paper, Maxwell wrote:  

“…assumption, therefore, that gravitation arises from the action of the surrounding 

medium… leads to the conclusion that every part of this medium possesses, when undisturbed, 

an enormous intrinsic energy… As I am unable to understand in what way a medium can 

possess such properties, I cannot go any further in this direction in searching for the cause of 

gravitation.”  

The properties of such a medium are presented in Table 1. Maxwell’s hypothesis was 

already investigated [3, 4], but connection with quantum mechanics was incomplete [5]. The 

first basis for relativistic quantum mechanics was found by Klein in 1926 and it is known as 

the Klein–Gordon equation, KGE [6]. Dirac maintained that the KGE equation is 

unacceptable [7] throughout his life.  

Basing on the Maxwell hypothesis [2] we combine the theory of elasticity [1] and the 

quaternion algebra discovered by Hamilton in 1843 [8]. Quaternion formulation of the 

elasticity theory allows expressing momentum conservation in the Klein form of the wave 

equation [6] and the Poisson equation. Quaternion formalism allows analyzing such 
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phenomena [11]. Properties of the medium (crystal) are shown in Table 1.  For simplicity, we 

consider the small deformation limit and consequently neglect here the effects due to density 

changes. 

Table 1 

The physical constants of the ideal isotropic crystal. 

Physical Quantity Unit 
Symbol for 

unit 
Value SI unit Reference 

Lattice parameter Planck length lP 1.616229(38)·10
-35

 m [9] 

Poisson ratio    0.25 - [10] 

Mass of particle Planck mass mP 2.176470(51)·10
-8

 kg [9] 

Planck density Mass density   2.062072·10
97

 kg·m
-3

 [9] 

Duration of the 

internal process 
Planck time tP 5.39116(13)·10

-44
 s

-1
 [9] 

Young modulus Energy density Y 4.6332447·10
114

 kg·m
-1

·s
-2

 This work 

 

2. The quaternion representation of the deformation field 

The Navier-Cauchy momentum equation in an elastic solid shows coupling between 

compression and torsion in the displacement 3u . Coupling becomes evident in the 

boundary condition (nonlocal) for the suitable differential equations on the quaternionic 

deformation field 0
ˆ H     , where symbol H  denotes the quaternion algebra, 

0 0div  u , ˆ rot   u  and 0  u u u .   

In the isotropic crystal (Poisson number 0.25  ) the displacement 3u  is described by 

 
2

2

0.4 0.4
3 graddiv rot rot

t

Y Y

 




 

u
u u , (1) 

where Y and ρ denote the Young modulus and density shown in Table 1.  

From Eq. (1), the local energy density in the deformation field follows [1] 

  
21 3 0.4 1 0.4

div rot rot
2 2 2

Y Y
e

 
  u u u u u , (2) 

where t  u u  and  is the standard product in 3  

In the small deformation limit Y const  , and one gets equivalently  

 
2

2 2

2
3 graddiv rot rot

t
c c




 

u
u u , (3) 

    
2 22 2 21 1 1

div div
2 2 2

rot rote c c c   u u u uu u , (4) 

where the Young modulus was estimated from the velocity of the transverse wave: 
80.4 2.99792458 10c Y    . 

Every deformation can be expressed by compression and rotation, i.e., can be divided 

into an irrotational and a solenoidal component. Thus, let u  belongs to the C
3
 class of 

functions. By the Helmholtz decomposition theorem: 0  u u u , 0rot 0u  and div 0 u , 

the Eq. (3) and formula (4) become 

    
2

2 2

0 0 02
2 graddiv

t
c c 


 


  u u u u u , (5) 
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2 22 2

0 0

1 1
div rot rot div

2 2
e c c 

    
 

u u u u u u . (6) 

Thus, there existsa deformation field  , such that one can represent the solenoidal 

(vector) and irrotational 

(scalar) fields as a superposition of the real and imaginary field parts at each point. From (5) 

and (6)                  

 
0

*

0

ˆ ,

ˆ ,

H

H

  

  

  

  
 (7) 

Where H  denotes the quaternion algebra [11], 0 0
ˆdiv , rot   u u , 

ˆdiv divrot 0  u  and 1 2 3̂     i j k , where i, j, k are the quaternion imaginary units 

obeying the following relations: 

 
2 2 2= = 1, ,

,  .

    

     

i j k ij ji k

jk kj i ki ik j
  (8) 

Because u belongs to the 3  class, and upon acting on Eq. (5) by the rotation and 

divergence operators, we can express it by the system 
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0

02

2
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2

ˆ
ˆ,
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t

c
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 (9) 

The local energy density of the deformation field per mass unit, formula (6), is now 

expressed by 

 2 * 2 21 1
02 2

ˆ ˆe c c     u u , (10) 

where 1 2 3
ˆ u u u  u i j k . By adding Eqs. (9) and from (7), the system (9) is expressed by a 

single partial differential equation: 

 
2

2 2

02
2 .c c

t








    (11) 

In the next section we will show that upon splitting Eq. (11) into the system of wave 

and Poisson equations, the nonlinear form of the wave equation follows. 

 

3. From the quaternion equation of motion to nonlinear wave and Poisson 

equations  

We consider a stationary wave, 2m Ec const  . Thus, Eq. (11) can be written as a 

system: 

 

2
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2 *
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2
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  (12) 

The wave equation in (12) can be written in the more compacted form 

 
2

*

2 2 2 2

1 8
0

P P

m

c t m c t


  

 
   

 
  , (13) 

or in the covariant notation 
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 *8
0

P

m
t






       , (14) 

where 
2

2 2

1

c t






   


 and  34 2 -12 1.05457 10 kg m s27P Pm c t      .  

The wave equation in the most compacted form is given by 

  * 0Pm

       (15) 

where   78 -2 1 28 4.420598 10 k m6 gP P Pm l 

     . 

System (12) is a hyperbolic-elliptic quaternion representations of a wave equation (11) 

and has solution of the form: 

 0 0 1 2 3
ˆ H            i j k . (16) 

The second equation in (12) is the Poisson equation and describes the irrotational, e.g., 

compression, potential in the deformation field 

 2 *

0 2

1
4

P P

m
m t

c       ,  (17) 

it can be expressed as a function of the local mass density: * 3

Pm l    . Thus (17) 

becomes: 

 
3

2

0 2
4 4P

P P

l
c G

m t
       , (18) 

using data in Table 1, the gravitational constant equals: 

 2 113 6.674082 10P P PG l t m    3 -1 -2m kg s .     Equations (9)-(15) require boundary 

conditions for a solution.    

 

4. The additional integral equation 
The energy is conserved thus, for  t ≥ 0 from Eq. (10) follows 

 
3

2 * 2 2 3

0

1 1ˆ ˆ d
2 2

c c const  
    

 
 u u r . (19) 

In a case of the bounded closed volume   3 , the above energy conservation 

formula becomes 

 
2

2 * 2 2 3

0

1 1 ( )ˆ ˆ d ,
2 2 P P

E mc
c c

m m
 



 
     

 
 u u r   

 * 2 3

02

1ˆ ˆ d ( ).
2 2

P
P P

m
m m m

c
 



 
     

 
 u u r  (20) 

The integral (20) can be treated as a nonlocal boundary condition for Eqs. (11)-(15).  

 

5. The nonlocal boundary condition 

In order to obtain a more simple and useful nonlocal boundary condition, the formula 

for the local energy density (4), should be expressed by the local energy flux S in the 

continuity equation 

 div 0
e

S
t


 


. (21) 

Below we derive the quaternion form of the energy flux following the Cauchy schema. 

Formula (4) upon differentiation becomes  



ISSN 2076-5851. Вісник Черкаського університету. Випуск №1. 2017 

 26 

 2 23 div div rot rot
e

t
c c


  


u u u u u u  (22) 

and using Eq. (3) we have 

  2 2 2 23 graddiv 3 div divrot rot rot rot
e

t
c c c c


   


u u u uu u u . (23) 

Using identities div ( ) grad divgrada a a u u u  and div( ) rot rot  A B B A A B , the 

formula (23) becomes 

    2 2div 3 div 0.rot
e

t
c c


     

u u u u   (24) 

Comparing (21) and (24), the energy flux equals    2 23 divrotS c c   u uu u  or in 

the quaternionic notation 

 2 2

0
ˆ ˆ3ˆ ˆS c c    uu   (25) 

or equivalently 

  2 2

0 0
ˆ ˆ3ˆS c c      uu . (26) 

Thus, the relation (21) can be written in the form of the continuity equation 

 ˆdiv 0
e

S
t


 


. (27) 

Moreover from (27) and the Gauss theorem we obtain 

  3 3d ˆ ˆ ˆd d div d d
d

e
e S S

t t
   


      

   r r n ,  (28) 

where n̂  is a normal outside vector to the boundary  , 1 2 3
ˆ .n n n  n i j k  Hence the 

condition 

  ˆ ˆ d 0S


  n   (29) 

is equivalent to the law of energy conservation (20) and it is a well posed nonlocal boundary 

condition for Eqs. (11)-(15). 

The Klein-Gordon equation fulfills the laws of special relativity, but contains two 

fundamental problems [12]. The first one is that it allows negative energies as a solution. As 

can be seen, the energy computed using formula (20) and solutions of Eq. (15) is per 

definition always positive. The second problem of the KGE is the indefinite probability 

density, e.g., it allows negative probabilities. From Eqs. (26) and (27) it follows that such a 

situation is avoided in the derived wave equation. 

 

6. Conclusions 

The alternative, mathematically correct derivation of the quaternion form of the 

momentum conservation law in an elastic solid is presented. Using the quaternion algebra, we 

demonstrated the transition from the classical Navier-Cauchy motion equation to its 

quaternion valued analogue. This quaternionic analogue elucidates the coupling between the 

irrotational and solenoidal displacement in the deformation field (compression and torsion) 

and allows for a physical interpretation of the wave mechanics and lets some of the quantum 

mysteries disappear. Below we compare the classical and quaternion forms of the equation of 

motion. The last column shows the terms that vanish in Eqs. (3) and (11) but contain 

information on the oscillation of internal energy due to the deformation caused by the 

spatially localized wave. These terms are essential to get system (12). 
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We derived a spatially localized nonlinear wave function that is equivalent to the 

particle: 

 
2

*8 0
P

mc

t



         

and its essential consequence, the formula for the irrotational potential field (gravity field): 

 4 G   , where 2

0c   . 

The wave and Poisson equations were derived from assumptions which are independent 

of the postulates of quantum mechanics. The formulae for the local energy density in its 

quaternionic form allow obtaining the nonlocal boundary conditions providing the energy 

conservation. The energy computed using a new wave equation is per definition always 

positive. The problem of the indefinite probability of the density, present in classical KGE, is 

ruled out as well. 

This derivation is new evidence that there is a well-defined mathematical connection 

between classical and quantum mechanics. The method allows the self-consistent classical 

interpretation of the wave phenomena and yields the non-relativistic gravity field. It is 

obvious that it can be generalized upon neglecting the assumptions of the constant density of 

mass and the constant Young modulus within the deformation field. 
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Анотація. Данілевські М., Сапа Л. Нелінійне рівняння Клейна-Гордона у 

пружному твердому середовищі Коші-Нав'є. Показано, що кватерніонна теорія поля 

може бути строго отримана з класичних рівнянь балансу в ізотропному ідеальному 

кристалі, де передавання імпульсу і енергія поля описуються рівнянням Коші-Нав’є. 

Теорія представлена у вигляді нелінійного хвильового рівняння та рівняння Пуасона з 

кватерніоно-значними хвильовими функціями. Отримана кватерніонна форма рівняння 

Коші-Нав'є зв'язує між собою стиснення і кручення поля зміщень. Хвильове рівняння 

має вигляд нелінійного рівняння Клейна-Гордона та описує просторово локалізовану 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7506-2633-X
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хвильову функцію, еквівалентну частинці. Виведене рівняння хвилі уникає проблем 

негативної енергії та ймовірності. Дається самоузгоджена класична інтерпретація 

хвильових явищ та гравітації. 

Ключові слова: квантова хвиля, кватерніонна алгебра, рівняння Клейна-Гордона, 

гравітація. 
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ISOCHRONAL ANNEALING OF ELECTRON-IRRADIATED TUNGSTEN 

MODELLED BY CD METHOD: INFLUENCE OF CARBON  

ON THE FIRST AND SECOND STAGES OF RECOVERING 

 

The evolution of the microstructure of tungsten under electron irradiation and post-

irradiation annealing has been modelled using a multiscale approach based on Cluster 

Dynamics simulations. In these simulations, both self-interstitials atoms (SIA) and vacancies, 

carbon atoms isolated or in clusters, are considered. Isochronal annealing has been 

simulated in pure tungsten and tungsten with carbon, focusing on recovery stages I and II. 

The carbon atom, single SIA, single vacancy and vacancy clusters with sizes up to four are 

treated as the mobile pieces. Their diffusivities as well as the energy formation and binding 

energies are based on the experimental data and ab initio predictions and some of these 

parameters have been slightly adjusted, without modifying the interaction character, on 

isochronal annealing experimental data. The recovery peaks are globally well reproduced. 

These simulations allow interpreting the second recovery peak as the effect of carbon. 

Key words: Post-irradiation Annealing, Tungsten, Carbon Effect, Cluster Dynamics.  

 

1. Introduction 

Tungsten is one of the candidate materials for the plasma facing component of fusion 

reactors because of its high melting point, high sputtering resistivity, and high temperature 

strength. Numerous studies have explored the recovery processes of radiation-induced 

damage in tungsten. Residual electrical resistivity was commonly used as an index of the 

damage present in materials for the damage recovery study, resulting in the identification of 

the temperatures and activation energies for different annealing stages. To date, the physical 

mechanisms governing the damage recovery of tungsten are still controversial. The next 

progress in study of this phenomenon could be done by Cluster Dynamics (CD) and Adaptive 

Kinetic Monte Carlo (AKMC) simulations. In our paper CD is applied to simulate the kinetics 

of point defects in post-irradiation annealing tungsten after electron irradiation. Special 

attention to effect of carbon is devoted. 


