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NONLINEAR KLEIN-GORDON EQUATION
IN CAUCHY-NAVIER ELASTIC SOLID

We show that the quaternionic field theory can be rigorously derived from the classical
balance equations in an isotropic ideal crystal where the momentum transport and the field
energy are described by the Cauchy-Navier equation. The theory is presented in the form of
the non-linear wave and Poisson equations with quaternion valued wave functions. The
derived quaternionic form of the Cauchy-Navier equation couples the compression and
torsion of the displacement. The wave equation has the form of the nonlinear Klein-Gordon
equation and describes a spatially localized wave function that is equivalent to the particle.
The derived wave equation avoids the problems of negative energy and probability. We show
the self-consistent classical interpretation of wave phenomena and gravity.
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1. Introduction

In 1821 Navier formulated the general theory of elasticity [1], “A Dynamical Theory of
the Electromagnetic Field” was published by Maxwell in 1856 [2]. The hypothesis that we
make use of in this work can be found in his paper. Let us begin with the well-known
Maxwell remark on the ether [2]:

“On our theory it (energy) resides in the electromagnetic field, in the space
surrounding the electrified and magnetic bodies, as well as in those bodies themselves, ... may
be described... according to a very probable hypothesis, as the motion and the strain of one
and the same medium (elastic ether)”.

In the almost unnoticed part of his paper, Maxwell wrote:

“...assumption, therefore, that gravitation arises from the action of the surrounding
medium... leads to the conclusion that every part of this medium possesses, when undisturbed,
an enormous intrinsic energy... As I am unable to understand in what way a medium can
possess such properties, | cannot go any further in this direction in searching for the cause of
gravitation.”

The properties of such a medium are presented in Table 1. Maxwell’s hypothesis was
already investigated [3, 4], but connection with quantum mechanics was incomplete [5]. The
first basis for relativistic quantum mechanics was found by Klein in 1926 and it is known as
the Klein—Gordon equation, KGE [6]. Dirac maintained that the KGE equation is
unacceptable [7] throughout his life.

Basing on the Maxwell hypothesis [2] we combine the theory of elasticity [1] and the
quaternion algebra discovered by Hamilton in 1843 [8]. Quaternion formulation of the
elasticity theory allows expressing momentum conservation in the Klein form of the wave
equation [6] and the Poisson equation. Quaternion formalism allows analyzing such
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phenomena [11]. Properties of the medium (crystal) are shown in Table 1. For simplicity, we
consider the small deformation limit and consequently neglect here the effects due to density
changes.

Table 1
The physical constants of the ideal isotropic crystal.
Physical Quantity Unit Syr?f:]?,: for Value Slunit |Reference
Lattice parameter,  Planck length Ip 1.616229(38)'10%  m [9]
Poisson ratio % 0.25 - [10]
Mass of particle Planck mass Mp 2.176470(51)'10°® kg [9]
Planck density Mass density p 2.062072:10 | kg:m® [9]
Duration of the | 5 time b |539116(13)10% st [9]
internal process
Young modulus | Energy density Y 4.6332447-10"** | kg-m™-s2 This work

2. The quaternion representation of the deformation field

The Navier-Cauchy momentum equation in an elastic solid shows coupling between
compression and torsion in the displacement ueR®. Coupling becomes evident in the
boundary condition (nonlocal) for the suitable differential equations on the quaternionic

deformation field o =0, +¢3 e H, where symbol H denotes the quaternion algebra,
o, =divu,, ¢=rotu, and u=u, +u,.
In the isotropic crystal (Poisson numberv =0.25) the displacement u € R® is described by

ou _ 3O'ﬂgraddivu — O'ﬂrotrotu, (1)

E p
where Y and p denote the Young modulus and density shown in Table 1.
From Eq. (1), the local energy density in the deformation field follows [1]

eziuou+§ﬂ(divu)2+lwrotuOrotu, )

2 2 p 2 p
where U =aou/ét and o is the standard product in R®
In the small deformation limit Y/ p = const, and one gets equivalently

2
ale:3czgraddivu—c2 rotrotu, (3)
l. . l 2 . 2 l 2 2 . 2
e=£uOu+§C (divu) +§C rotuorotu+c?(divu), (4)

where the Young modulus was estimated from the velocity of the transverse wave:

c= Q/O.4Y/p =2.99792458-10°.

Every deformation can be expressed by compression and rotation, i.e., can be divided
into an irrotational and a solenoidal component. Thus, let u belongs to the C* class of
functions. By the Helmholtz decomposition theorem: u=u,+u,, rotu, =0 and divu, =0,

the Eq. (3) and formula (4) become

2

%(uo+u¢):2c2graddiwo+czA(u0+u¢), (%)
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e=%u00+%c2 [(divuo)2 +rotu¢orotu¢}+c2(divuo)z. (6)

Thus, there existsa deformation field o, such that one can represent the solenoidal
(vector) and irrotational
(scalar) fields as a superposition of the real and imaginary field parts at each point. From (5)
and (6)
oc=0,+¢ €H,
=% ¢A @
o =0,-¢ €H,

Py

Where H denotes the quaternion algebra [11], o, =divu,, ¢=rotu,,

diV¢3 =divrotu, =0 and ¢3:¢1 1+¢, J+ @, K, where i, j, k are the quaternion imaginary units
obeying the following relations:
i=j=k*=-1, ij=-ji=k,
e s aEAre (®)
jk =—Kkj =1, ki=-ik =].
Because u belongs to the C*® class, and upon acting on Eq. (5) by the rotation and
divergence operators, we can express it by the system

A

2
5 9)
Z2% =32 Ao,

The local energy density of the deformation field per mass unit, formula (6), is now
expressed by

e=10-0+1ic’ o-0" +C%, (10)
where (1= U, i+u, J+u, k. By adding Egs. (9) and from (7), the system (9) is expressed by a
single partial differential equation:
oo
ot’
In the next section we will show that upon splitting Eg. (11) into the system of wave
and Poisson equations, the nonlinear form of the wave equation follows.

=c’Ac +2¢°Ac,. (11)

3. From the quaternion equation of motion to nonlinear wave and Poisson
equations

We consider a stationary wave, m=Ec™ =const. Thus, Eq. (11) can be written as a
system:

2
(——C2A+ adll a*jazo,

t? t2
0 Melp (12)
2C°Ac, =— 87”2 c-o.
Mplp
The wave equation in (12) can be written in the more compacted form
2
iza—z—A J+87Z—TZG*-O':0, (13)
¢ ot m, c°t;

or in the covariant notation
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8#8*‘0'+mh8—7[0'*~a=0, (14)
P

10 » :
where 0,0" == ——A and 7 =m, ¢’t, =1.0545727-10 % kg m*s™ |.

2

The wave equation in the most compacted form is given by
(6,0+ml,0")-c=0 (15)
where ¢, =87/(m,|3)=4.4205986-10"[ kg *m” .
System (12) is a hyperbolic-elliptic quaternion representations of a wave equation (11)
and has solution of the form:
c=0,+p=0c,+Bi+djrokeH. (16)

The second equation in (12) is the Poisson equation and describes the irrotational, e.g.,
compression, potential in the deformation field

*

oo, a7

C*Ac, = —4rm——;

PP
it can be expressed as a function of the local mass density: p=mo-o’/I3. Thus (17)

becomes:
3

c*Ac, =—4np l ~=—4rpG, (18)
m,t2

using data in Table 1, the gravitational constant equals:

G= Iﬁ/(tﬁmP )=6.674082-10 " | m*-kg*-s® |.  Equations (9)-(15) require boundary

conditions for a solution.

4. The additional integral equation
The energy is conserved thus, for t> 0 from Eq. (10) follows

1 2~ » l *
j(—t]ou+—c20~0' +cza§jd3r:const. (19)
2\ 2 2
In a case of the bounded closed volume Qc R®, the above energy conservation
formula becomes

2
J.(lﬁofﬁlcza-a*+cza§Jd3r:@:£,
o 2 2 m, m,
j Mo ol imo-o +m,o? d’r = m(Q) (20)
2c? 5P P00 = :
Q

The integral (20) can be treated as a nonlocal boundary condition for Egs. (11)-(15).

5. The nonlocal boundary condition
In order to obtain a more simple and useful nonlocal boundary condition, the formula
for the local energy density (4), should be expressed by the local energy flux S in the
continuity equation
@erivS:O. (21)
ot
Below we derive the quaternion form of the energy flux following the Cauchy schema.
Formula (4) upon differentiation becomes
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%=u00+302divudivquchotuOrotu (22)

and using Eqg. (3) we have

%:00(302graddivu—CertrOtu)+3C2divudivu+C2r0tuorOtllI. (23)
Using identities div (au) =ucgrada-+adivgradu and div(AxB)=Borot A—A-rotB, the
formula (23) becomes

%—div[%z(divu)U—CZ(rOtu)xU]=O. (24)

Comparing (21) and (24), the energy flux equals S =C?*(rotu)xu—3c*(divu)u or in
the quaternionic notation

$ =C?@x0-3c%, G (25)
or equivalently
$=C*(o—0,)x0-3C%, 0. (26)
Thus, the relation (21) can be written in the form of the continuity equation
% L divé=0. 27)
ot

Moreover from (27) and the Gauss theorem we obtain
Ejeolgzzj@o|3r=—jo|ivs”ol?’r:-jsioﬁd(ag:), (28)
dt Q Q at Q oQ

where A is a normal outside vector to the boundary 6Q, A=ni+n,j+n,K. Hence the
condition
[Send(aQ)=0 (29)
o

is equivalent to the law of energy conservation (20) and it is a well posed nonlocal boundary
condition for Egs. (11)-(15).

The Klein-Gordon equation fulfills the laws of special relativity, but contains two
fundamental problems [12]. The first one is that it allows negative energies as a solution. As
can be seen, the energy computed using formula (20) and solutions of Eq. (15) is per
definition always positive. The second problem of the KGE is the indefinite probability
density, e.g., it allows negative probabilities. From Egs. (26) and (27) it follows that such a
situation is avoided in the derived wave equation.

6. Conclusions

The alternative, mathematically correct derivation of the quaternion form of the
momentum conservation law in an elastic solid is presented. Using the quaternion algebra, we
demonstrated the transition from the classical Navier-Cauchy motion equation to its
quaternion valued analogue. This quaternionic analogue elucidates the coupling between the
irrotational and solenoidal displacement in the deformation field (compression and torsion)
and allows for a physical interpretation of the wave mechanics and lets some of the quantum
mysteries disappear. Below we compare the classical and quaternion forms of the equation of
motion. The last column shows the terms that vanish in Egs. (3) and (11) but contain
information on the oscillation of internal energy due to the deformation caused by the
spatially localized wave. These terms are essential to get system (12).
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o°u . m
Fa = c*(2au-3rotrotu) +  c’graddivu  +  WV(t)-WV(t).|5
S
) gradient of mech-
momentum torsion & compre- ] ) )
. compression force anical potential
change per = ssion: "wave force" + ) + )
. . per mass unit per mass unit
mass unit per mass unit
Quaternion analogue: U
o’c gzm, . . [1
- = c’Ao + 2¢°Ac, + > (0'-0' -c-0 ) -
ot met, S
momentum change torsion & compression: compression force fluctuation of mechani-
per Planck = "wave force" per + per Planck + cal potential per Planck
particle & length Planck particle & length particle & length particle & length

We derived a spatially localized nonlinear wave function that is equivalent to the

particle:

2
0,0"c+8r ME =0
P
and its essential consequence, the formula for the irrotational potential field (gravity field):
APp=4rpG , where ¢=—c’c,.

The wave and Poisson equations were derived from assumptions which are independent
of the postulates of quantum mechanics. The formulae for the local energy density in its
quaternionic form allow obtaining the nonlocal boundary conditions providing the energy
conservation. The energy computed using a new wave equation is per definition always
positive. The problem of the indefinite probability of the density, present in classical KGE, is
ruled out as well.

This derivation is new evidence that there is a well-defined mathematical connection
between classical and quantum mechanics. The method allows the self-consistent classical
interpretation of the wave phenomena and vyields the non-relativistic gravity field. It is
obvious that it can be generalized upon neglecting the assumptions of the constant density of
mass and the constant Young modulus within the deformation field.
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Anomauis. /laninescoxi M., Cana JI. Heniniiine pisnauna Kneitna-I'opoona y
npysxcnomy meepoomy cepeoosuwyi Kowi-Hae'e. [loxazano, wo keameprioHHa meopis nos
Modice Oymu cmpo20 OmpuMaHa 3 KiIACUYHUX DIBHAHb OALAHCY 8 I30MPONHOMY 10ealbHOMY
Kpucmani, 0e nepeoasanHs IMNYIbCy i eHepeis nois onucyromocs piensanuam Kowi-Hag'e.
Teopiss npeocmasnena y 6ueisidi HENiHIIHO20 X8UNbOB020 PISHAHHS ma pieHsHHs [lyacona 3
K8AMEPHIOHO-3HAYHUMU X8UNbOBUMU PYHKYIAMU. Ompumana KeamepHiOHHA (hopmMa PieHAHHSL
Kowi-Has'e 36's3ye migic coboto cmucHenus i KpyueHHs nojs 3miujenb. Xeuibose pieHIHHS
mae suensio HeniHilinoeo pisensanua Knetina-I'opoona ma onucye npocmopogo 10KANi308aHy
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X8UNbOBY (YHKYIIO, eKgisaleHmuy uacmunyi. Bueedene pisHAHHA X6UNi YHUKAE NpoOiem
He2amueHoi eHnepeii ma tmogipnocmi. /lacmvbcsi camoy3e002ceHa KiacuyHa inmepnpemayis
XBUNLOBUX ABUUY, MA 2PAGIMAayii.

Kro4oBi cjioBa: KBaHTOBA XBUJISI, KBaTepHIOHHA anreOpa, piBHsAHHSA Kielina-I'opiona,
rpaBiTartis.
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ISOCHRONAL ANNEALING OF ELECTRON-IRRADIATED TUNGSTEN
MODELLED BY CD METHOD: INFLUENCE OF CARBON
ON THE FIRST AND SECOND STAGES OF RECOVERING

The evolution of the microstructure of tungsten under electron irradiation and post-
irradiation annealing has been modelled using a multiscale approach based on Cluster
Dynamics simulations. In these simulations, both self-interstitials atoms (SIA) and vacancies,
carbon atoms isolated or in clusters, are considered. Isochronal annealing has been
simulated in pure tungsten and tungsten with carbon, focusing on recovery stages | and II.
The carbon atom, single SIA, single vacancy and vacancy clusters with sizes up to four are
treated as the mobile pieces. Their diffusivities as well as the energy formation and binding
energies are based on the experimental data and ab initio predictions and some of these
parameters have been slightly adjusted, without modifying the interaction character, on
isochronal annealing experimental data. The recovery peaks are globally well reproduced.
These simulations allow interpreting the second recovery peak as the effect of carbon.

Key words: Post-irradiation Annealing, Tungsten, Carbon Effect, Cluster Dynamics.

1. Introduction

Tungsten is one of the candidate materials for the plasma facing component of fusion
reactors because of its high melting point, high sputtering resistivity, and high temperature
strength. Numerous studies have explored the recovery processes of radiation-induced
damage in tungsten. Residual electrical resistivity was commonly used as an index of the
damage present in materials for the damage recovery study, resulting in the identification of
the temperatures and activation energies for different annealing stages. To date, the physical
mechanisms governing the damage recovery of tungsten are still controversial. The next
progress in study of this phenomenon could be done by Cluster Dynamics (CD) and Adaptive
Kinetic Monte Carlo (AKMC) simulations. In our paper CD is applied to simulate the kinetics
of point defects in post-irradiation annealing tungsten after electron irradiation. Special
attention to effect of carbon is devoted.
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