ISOCHRONAL ANNEALING OF ELECTRON-IRRADIATED TUNGSTEN MODELLED BY CD METHOD: INFLUENCE OF CARBON ON THE FIRST AND SECOND STAGES OF RECOVERING

A. R. Gokhman, D. Terentyev, M. S. Kondria

Abstract


The evolution of the microstructure of tungsten under electron irradiation and postirradiation annealing has been modelled using a multiscale approach based on Cluster Dynamics simulations. In these simulations, both self-interstitials atoms (SIA) and vacancies, carbon atoms isolated or in clusters, are considered. Isochronal annealing has been simulated in pure tungsten and tungsten with carbon, focusing on recovery stages I and II. The carbon atom, single SIA, single vacancy and vacancy clusters with sizes up to four are treated as the mobile pieces. Their diffusivities as well as the energy formation and binding energies are based on the experimental data and ab initio predictions and some of these parameters have been slightly adjusted, without modifying the interaction character, on isochronal annealing experimental data. The recovery peaks are globally well reproduced. These simulations allow interpreting the second recovery peak as the effect of carbon.

Keywords


Post-irradiation Annealing; Tungsten; Carbon Effect; Cluster Dynamics

References


Gokhman A., Pecko S. and Slugeň V. (2015). Simulation of nanostructure evolution under helium implantation in Fe-(2.5-12.5)at% Cr alloys at temperature of 343K. Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology. Vol. 170 –P . 745-757.

Fu C. C., Dalla Torre, Willaime F., Bocquet J.L., Barbu A.. (2005). Multiscale modelling of defect kinetics in irradiated iron. Nature Materials Vol. 4 – P. 68-74.

Fikar J., Schaublin R.. (2009). Nucl. Instr. Methods Phys. Res Vol. B 267. – P. 3218–3222.

Dieter G. E. (1988). Mechanical Metallurgy. – London, symmetric edition. : McGraw-Hill Book Company (in England)

Li Y. G., Zhou W. H., Ning R. H., Huang L. F., Zeng Z., Ju X. (2012). Cluster Dynamics Model for Accumulation of Helium in Tungsten under Helium Ions and Neutron Irradiation. Commun. Comput. Phys. Vol. 11. – P. 1547-1568

Satta A., Willaime F., Stefano de Gironcoli. (1998). Vacancy self-diffusion рarameters in tungsten: Finite electron-temperature LDA calculations. Phys. Rev. Vol. B 57 – P. 11184.

Derlet P. M., Nguyen-Manh D., Dudarev S. L., (2007). Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys. Rev. Vol. B 76. – P. 054107

Withop Arthur (1966). ). The diffusion of carbon into tungsten (PhD Thesis, The University of Arizona, the United States).

Aleksandrov L. N. (1960). Zavodskaya Laboratorya. Vol. 25. P. 925-935.

Becker, J. A., E. I. Becker, and Re. G. Brandes. (1961). J. Appl. Phys. Vol. 32. – P. 411-423.

Bushmer C. P., Crayton P. H. (1971). Carbon Self-Diffusion in Tungsten Carbide. Journal of Material Science No 6 – P. 981-988.

Yue-Lin Liu, Hong-Bo Zhou, Shuo Jin, Ying Zhang, Guang-Hong Lu. (2010). Dissolution and diffusion properties of carbon in tungsten. J. Phys. Vol. 22 – P. 445504 (6pp).

Tyson W. R, Miller W. A. (1977). Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surface Science. Vol. 62 – P. 67-276.

Becquart C. S., C. Domain, U. Sarkar, and et al. (2010). J. Nucl. Mater. Vol. 403 – P. 75 -88.

Nguyen-Manh D. (2009). Modelling of Point Defect-Impurity Interaction in Tungsten and other Bcc Transition Metals. Advanced Materials Research No 59 – P. 253-256.

LSODA is part of the ODEPACK provided by Alan C. Hindmarsh 1984 onthe CASC server of the Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.

Gear C.W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Gear– NJ. : Prentice-Hall,Englewood Cliffs. (in USA)

Neely H., Keeper D. W., Sosin A. (1968). Keeper and A. Sosin, Electron Irradiation and Recovery of Tungsten. Phys. stat. sol. Vol. 28. – P. 675-682.

Ngayam-Happy R., Olsson P., Becquart C. S., Domain C. (2010). Isochronal annealing of electron-irradiated dilute Fe alloys modelled by an ab initio based AKMC method: Influence of solute–interstitial cluster properties. Journal of Nuclear Materials.

Vol. 407. – P. 16–28


Full Text: PDF
Archive
2013 16
2014 16
2015 16
2016 1
2017 1
2018 1
2019

1

User

Language

Journal Content

Browse