New analytical forms of the deuteron wave function and polarization characteristics for potential Reid93

V. I. Zhaba

Abstract


In the present paper the approximated deuteron wave function in the coordinate representation for realistic phenomenological nucleon-nucleon potential Reid93 is presented. Two new analytical forms as a product of power function (or polynomial 2nd or 4th order) and the exponential function are offered. Numerical coefficients of analytical forms are designed. Wave functions, which were calculated by these analytical forms, do not contain superfluous nodes near the origin. For deuteron wave functions in coordinate and momentum representation there are such calculated polarization characteristics as: component of tensor of sensitivity polarization of deuterons Т20, polarization transfer К0, tensor, which analyses power Ауу and tensor-tensor polarization transfer Куу. The choice of form for analytical approximation deuteron wave function in the coordinate representation influences the results of calculations of polarization characteristics region for large values of momentum. This effect is well illustrated for polarization transfer К0 and tensor tensor polarization transfer Куу.


Keywords


deuteron; wave functions; potential; approximation; analytical form; polarization; knot

References


1. Machleidt R. (2001). The nuclear force in the third millennium. Nucl. Phys. A., 689(1), 11-22.
2. Machleidt R. (2001). High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C., 63(2), 024001-024032.
3. Kukulin V. I., Pomerantsev V. N., Faessler A. et al. (1998). Moscow-type NNpotentials and three-nucleon bound states. Phys. Rev. C., 57(2), 535-554.
4. Haysak І., Zhaba V. (2009). On the nods of the deuteron wave function. Visnyk Lviv. un-tu. Seriia fizychna (Visnyk Lviv Univ. Ser. Phys.), 44, 8-15. (in Ukr)
5. Haysak І. І., Zhaba V. І. (2014). Deuteron: wave function and parameters. Nauk. visnyk Uzhhorod. un-tu. Seriia Fizyka (Uzhhorod Univ. Scien. Herald. Ser. Phys.), 36, 100- 106. (in Ukr)
6. Bohinyuk V.S., Zhaba V. І., Parlag A. М. (2012). On the reaction cross section energy dependence (γ,γ’). Nauk. visnyk Uzhhorod. un-tu. Seriia Fizyka (Uzhhorod Univ. Scien. Herald. Ser. Phys.), 31, 111-115. (in Ukr)
7. Stoks V. G. J., Klomp R. A. M., Terheggen C. P. F. et al. (1994). Construction of high quality NN potential models. Phys. Rev. C., 49(6), 2950-2962.
8. Dubovichenko S. B. (2004). Properties of light atomic nuclei in the potential cluster model. Almaty: Daneker. (in Rus.)
9. de Swart J. J., Klomp R. A. M. M., Rentmeester M. C. M. et al. (1995). The Nijmegen Potentials. Few-Body Systems, 8, 438-447.
10. Ladygin V. P., Ladygina N. B. (2002). Polarization effects in the inelastic deuteron scattering (d,d’)X in the vicinity of baryonic resonance excitation. Yadernaya Fizika (Yad. Fiz.), 65(1), 188-195 (in Rus.)
11. Karmanov V. А. (1981). Polarization appearances in elastic pd-scattering back at an energy in the field of 1 GeV. Yadernaya Fizika (Yad. Fiz.), 34(4), 1020-1027. (in Rus.)
12. LadyginV. P., Uesaka T., Saito T. et al. (2004). Measurement of the tensor analyzing power T20 in the dd >3Hen and dd->3Hp at intermediate energies and at zero degree. Phys. Lett. B., 598(1), 47-54.
13. Azhgirey L. S., Afanasiev S. V., Isupov A. Yu. et. al. (2005). Measurement of the tensor Ayy and vector Ay analyzing powers of the deuteron inelastic scattering of beryllium at 5.0 GeV/c and 178 mrad. Phys. Atom. Nucl., 68(6), 991-998.

14. Ladygin V. P., Azhgirey L. S., Afanasiev S. V. et al. Tensor Ayy and Vector Ay Analyzing Powers of the (d,p) and (d,d) Reactions at 5 Gev/c and 178 MR // arXiv:nuclex/0412020.


Full Text: PDF (Українська)
Archive
2013 16
2014 16
2015 16
2016 1
2017 1
2018 1
2019

1

User

Language

Journal Content

Browse