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ON PROPAGATION OF INITIAL CORRELATIONS IN ACTIVE SOFT
MATTER

For collisional dynamics modeling the collective behavior of complex systems of
mathema-tical biology, the process of propagation of initial correlations is described. The
developed approach is based on the construction of a mean field limit for a solution of the
Cauchy problem of the nonlinear BBGKY hierarchy for marginal correlation functions.
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1. Introduction

As well known a main consistent approach to the problem of the derivation of kinetic
equations from underlying large particle dynamics was formulated by M.M. Bogolyubov [1]
(see also [2]). The rigorous derivation of kinetic equations for many-particle systems in
condensed states is an open problem so far [3, 4].

In modern researches, the main approach to the problem of the rigorous derivation of
kinetic equations consists in the construction of scaling asymptotics of a solution of evolution
equations which describe the evolution of states of large particle systems, for example, a
mean field limit of a solution of the BBGKY (Bogolyubov—Born—Green—Kirkwood—Yvon)
hierarchy constructed by methods of the perturbation theory [3, 4].

It should be noted modern wide applications of kinetic equations to the description of
collective processes of various nature, in particular, the collective behavior of complex
systems of biology. We emphasize that the considerable advance in modeling of the kinetic
evolution of systems of mathematical biology with a large number of constituents (entities),
for example, systems of large number of cells, is recently observed [5—11] (see also
references cited therein).

In this paper we consider the problem of a rigorous description of the evolution of states
within the framework of marginal correlation functions governed by the nonlinear BBGKY
hierarchy for a large system of interacting stochastic processes of collisional kinetic theory
[12], modeling the microscopic evolution of active soft condensed matter [6, 7]. The
developed approach to the derivation of kinetic equations is based on the construction of a
mean field limit of a nonperturbative solution of the Cauchy problem of the nonlinear
BBGKY hierarchy. One of the advantages of a such approach is the opportunity to describe
the processes of propagation of initial correlations in scaling limits, in particular, that can
characterize the condensed states of soft matter.

2. On collisional dynamics of active soft condensed matter
The many-constituent systems of active soft condensed matter [6, 7] are dynamical
systems displaying a collective behavior which differs from the statistical behavior of usual
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many-particle systems [4]. To specify such nature of constituents (entities) we consider
dynamical system suggested in papers [5, 12] which is based on the Markov jump processes
that must represent the intrinsic properties of living creatures (self-propelled particles).

We consider a system of entities of various M subpopulations introduced in paper [12]
in case of non-fixed, i.e. arbitrary, but finite average number of entities. Every i -th entity is
characterized by: u, =(j,u,)eJ xU, where j eJ=(lL....M) is a number of its
subpopulation, and values u, € i/ = R? is its microscopic characteristics.

The stochastic dynamics of n entities of various subpopulations is described by the
semi-group ¢™ of the Markov jump processes defined on the space L of the integrable
functions f, (u,,...,u,) defined on (J xU)", that are symmetric with respect to permutations

of the arguments u,,...,u,, and equipped with the norm:

I, ||L;=Zjley"'zj,,eyj du,...du,|f,(u,,...,u,)

The infinitesimal generator A’ of this semigroup (the generator of the Kolmogorov

backward equation for states of n entities) is defined on the space L, and it has the following
structure [12]:

n

A f )W) =36 Y (A" Gnd,) f, ) (8o, ) =

m=1 i #.. #1, =1
M . n
28”’" z j A[”’](ul.l;v,ul.2 sl )a["’](v,ul.2 ,...,ul.m) (D)
m=1 i #. 20, =1 Ixu
fn(u,,...,ul.l_,,v,ul.lﬂ,...,un)dv—a["’](ul.],...,uim ), (uy,...,u)),
where ¢ >0 is a scaling parameter [13], the functions a["’](ul.] ,...,u, ), m=>1, characterize the

interaction between entities, in particular, in case of m =1 it is the interaction of entities with
an external environment. These functions are measurable positive bounded functions on

(J xU)" such that: 0<da"(u,,...,u, )<a, where @™ is some constant. The functions
A[’"](v;ul.],...,uim), m>1, are measurable positive integrable functions which describe the
probability of the transition of the j entity in the microscopic state u, to the state v as a
result of the interaction with entities in the states u,,...,u, (in case of m=1 it is the

interaction with an external environment). The functions A" (v; u.,..u ), m>1, satisfy the

conditions: L UA["’](v;ul.l,...,ul.ﬂ )dv=1, m>1. We refer to paper [12], where examples of

[m

the functions a'™ and A" are given in the context of biological systems.

In case of M =1 generator (1) has the form » " All(i) and it describes the free
stochastic evolution of entities, i.e. the evolution of self-propelled particles. The case of
M =m=>2 corresponds to a system with the m -body interaction of entities in the sense
accepted in kinetic theory [4]. The m -body interaction of entities is the distinctive property of
biological systems in comparison with many-particle systems, for example, gases of atoms
with a pair interaction potential.

On the space L, the one-parameter mapping ¢™ is a bounded strong continuous
semigroup of operators.
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Further we restrict ourself by the case of M =2 subpopulations to simplify the
cumbersome formulas.

3. Dynamics of correlations

The evolution of all possible states of a system of non-fixed number of the Markov
jump processes within the framework of dynamics of correlations [14], [15] is described by
means of the sequence g(¢t)=(l,g,tu,),....g,t u,...,u,),...) of correlation functions

governed by the following Liouville hierarchy (hierarchy of the Kolmogorov backward
equations) [15], [16]:

%gn(r,u.,...,u»=(A’;gn(r>>(u],...,un>+ @)

+& Z 2 z A*[z](i,,iz)g‘xl‘(t,U])g‘Xz‘(t,Uz), nxl,

P:(l,...,n):XlLJ)(2 heX| heX,

where z is the sum over all possible partitions P of the set of indexes
P:(l,...,n):XIUXZ

(1,...,n) into two nonempty mutually disjoint subsets X, X, and the arguments U, of the

function g, correspond to indexes from the set X.
For initial states g(0)=(g,.g",...,g ",...) from the space L =@" L a
nonperturbative solution of the Cauchy problem of hierarchy (2) is represented as follows:
g(tu,...,u)=G(l,...,ng(0)), n=l, 3)
where on the space L' the nonlinear one-parameter mapping G(z|+) is defined by the
expansion [15]
Gl onl = Y Ay (X (X T A (U) n21 @)
P:(I,...,n):U]_X]- X;cP
in which the generating operator is the | P |#k-order cumulant of groups of operators e”‘;,
n>1,

Ql‘p‘ (l‘,{X]},...,{/Y‘P‘}) = | z (_1)\15\—1 (| p |_1)! H et/\;,(zk)‘, (5)

P:({Xl},..,,{X‘P‘}):Uka Z,cP

the symbol means the sum over all possible partitions P of the set (1,...,n)
y

P:(l,...,n):Ul_X/-
into |P| nonempty mutually disjoint subsets X, the set ({X,},...,{X}) consists from
elements of which are subsets X, < (1,...,s) and the declusterization mapping ¢ is defined
by the equality: 0({X},....{X;}) =(L...,n).

The evolution of states of large particle systems can be also described within the
framework of marginal (s-particle) correlation functions governed by the fundamental
evolution equations known as the nonlinear BBGKY hierarchy [16, 17]. We note that
macroscopic characteristics of fluctuations of mean values of observables are determined by
means of marginal correlation functions [1].

The marginal correlation functions are defined within the framework of solution (3) of
the Cauchy problem of hierarchy (2) by the following series expansions:

Gs(t,u,,...,us)iZ% I du,, ...du. G(tl,...,s+n|g(0)), s=>1. (6)

n=0""* (Txuy"
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According to the estimate:
1G(5:L,....s| )]l <sle*c,

where ¢ =e’max(l, max (o I| f\X,-\ ”L\lx,-\)’ series (6) exists and the following estimate
holds: |G, ()], <s!(2¢) ¢’y (2¢*) ¢”.

Then, according to definition (6), the evolution of all possible states of a system of non-
fixed number of stochastic processes defined above can be described by means of the
sequence G(?) =(1,G,(?),G,(¢),...,G (t),..)e L' =@~ L of marginal correlation functions
governed by the Cauchy problem of the nonlinear BBGKY hierarchy: [16], [17]:

%Gs(t,u,,...,us):(Asz(t))(u],...,us)+

+e Y > D A,i)G, (1,U,)G, (1,U,)+ (7)

P:(l,...,s):XlUXz eX, hLeX,

te j dus+]iA*[2](i’s+1)(Gs+l(t’ul”"’us+1)+

TIxU i=l

2 GytU)G, (L0,)),
P:(l,...,s+1)=X, sz,

ieX|;s+leX,

G,(1)]_,=G"*

o, s 21, (8)
where ¢ > 0 is a scaling parameter and we use accepted in hierarchy (2) notations.
A nonperturbative solution of the Cauchy problem (7), (8) is represented by a sequence
of marginal correlation functions:
=1
G (tu,...,u)=) — I du,, ...du_ A, (t:{1,...,s},s+L..,s+n¢n|G(0)), s=1, 9
n=0 n' n ‘ ‘
(TxU)
where we denote by G(0)=(1,G*,...,G’*,...) a sequence of initial marginal correlation

functions. The generating operator 2 . (¢z]*) of series expansion (9) is the (1+ n)th-order

1+n
cumulant of groups of nonlinear operators (4) of the Liouville hierarchy (2)
A AL, sh s+, s +n|G(0) = (10)
3 (=) (1P 1-1)1G(50(x,)1...6(£0(X,)1G(0))...),
P:({],...,s},s+],...,s+n):Uka

where the composition of mappings (4) of corresponding noninteracting groups of interacting
stochastic processes is denoted by G(1;0(X))|...G(6;0(X )| G(0))...) [17].

Series expansion (9) exists under the condition that: max, . ||G"*

6], <@yt

G elL,,cL, it is a strong solution and for arbitrary initial data G,“ € L, it is a weak
solution of the Cauchy problem (7), (8).
The sequence of marginal correlation functions (9) describes the processes of the

creation and the propagation of correlations in a large system of interacting stochastic
processes, modeling the microscopic evolution of active soft condensed matter.

5. A mean field asymptotic behavior of marginal correlation functions
We describe the processes of the creation and the propagation of correlations in a mean
field limit, namely, we establish the mean field asymptotic behavior [18] of constructed
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marginal correlation functions (9) in case of the initial state specified by the one-particle
marginal correlation function with correlations

G(LL) (1 GOé(u]) g2 llpuz HGO& ’ ’gn ul’ ’ HGO& ...]’ (11)

i=l1
where functions g (u,,...,u,)=g., n=2, are specified the initial correlations. We note that

a such assumption about initial states is intrinsic for the kinetic description of many-particle
systems [4], on the other hand, initial states (11) are typical for soft condensed matter.

We assume the existence of a mean field limit of initial one-particle marginal
correlation function in the following sense

limHeGlo"' - g]OHd =0, (12)

e—>0

and for initial correlations, respectively,

n

lim
e—0

L =0, n22. (13)

Hence a mean field limit of initial state (11) is specified by the sequence of the limit
marginal correlation functions

g(“) (1 8 (”1) gz u,u, Hgl 1' > ’gn u,..u Hgl i a] (14)

i=l1
Under conditions (12), (13) on initial state (11) there exists a mean field limit of
marginal correlation functions (9) in the following sense:

ljn(}“esGs 0-g,0)|, =0, s>1,
where for s >2 the limit marginal (s -particle) correlation function g (¢) is determined by
the formula
1 S R s
gs(t,u],...,us):Hem (&) Z H g‘Xi‘(Ul.)He At )I_Ig1 (t,uj), (15)
i=1 P(Ls)= ) X, X, <P ip=1 j=l
and, respectively, the limit one-particle correlation function g,(¢#) is represented by the

following series expansion:

g (tu)= ZJ'dt J‘dl‘ J‘ du,.. dun+le(’ 1A l](])x

n=0 @ (JXZ/{)
2
><A*[2](1,2)1_[e(t‘_tz H el =) na) o (16)
Ji=1 Jn1=1
n+l n+l

><Z:A[2 i,n+ He'/\ z Hg\xi\(Ui)ll:i[gl()(ui)’

P(],...,n+]):Ul_XI. X,cP
where it is used notations accepted above.
The operator g,(¢) represented by series (16) is a solution of the Cauchy problem of the
Vlasov-type kinetic equation with initial correlations:

0 .
ag, (t,u]):A ['](l)gl(t,ul)+ (17)
AT 2 1]/
- j du, A" (1, 2)H (1‘)(1+gz(u],uz))l_[e_m[](IZ)g1 (t,u) g, (t.u,),
Ixu i=1 i,=1
gl(t’ul)|t:02glo(ul)’ (18)
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where the operators AT(1) and A™!(1,2) are defined according to formula (1). We point out

that derived kinetic equation for a many-constituent system modeling collective behavior of
active soft condensed matter (17) is the non-Markovian evolution equation.

We remark that in case of initial states of statistically independent interacting stochastic
processes specified by a one-particle marginal distribution function the kinetic evolution is
governed by the Vlasov kinetic equation and equality (15) means the property of the
propagation of initial chaos [18].

The proof of stated results is based on the corresponding formulas for cumulants of
asymptotically perturbed semigroups of operators (5).

Indeed, if f, € L,, then for arbitrary finite time interval for the strongly continuous

semigroup ™ the following equality is valid:
et/\ f Het/\

As a result of this equality for the (s+ n)th-order cumulants of semigroups of operators

lim =0.

e—>0

LL
(5) the following equalities are true:

lim ||—
e—0

A, (t1,...s+n)f, || =0, s>2.

g" I

In consequence of the validity of this equalities the representation of the limit one-
particle correlation function g (¢) by series expansion (16) is also obtained directly in view
that series expansion (9) in the case of initial data (11) takes the form

n+l

G (tu)= Z J. du,...du,, A, (t1,....n+]) Z H g\X\ i)HGlo,s (”
(sz,{) Pi(l,.nt)={ ] X; X, <P i=l
where it is used notations accepted above.
We note that the sequence of limit marginal correlation functions (16) and (15) is a
solution of the nonlinear Vlasov hierarchy which describe the evolution of marginal
correlation functions in a mean field limit for arbitrary initial states [16, 18].

6. Conclusion

For a large system of interacting stochastic processes of collisional kinetic theory [12],
modeling the microscopic evolution of active soft condensed matter, a mean field scaling
asymptotics of nonperturbative solution (9) of the Cauchy problem of the nonlinear BBGKY
hierarchy (7),(8) for marginal correlation functions was constructed.

The marginal correlation functions give an equivalent approach to the description of the
evolution of states of large particle systems in comparison with marginal density functions
governed by the BBGKY hierarchy [4]. The macroscopic characteristics of fluctuations of
observables are directly determined by marginal correlation functions (9) on the microscopic
level [1, 16].

In case of initial states specified by correlation functions (14), which can characterize
the analogs of condensed states of many-particle systems of statistical mechanics for
interacting entities of complex biological systems, a mean field asymptotic behavior of the
processes of the creation and the propagation of correlations were described (15). It was
established that mean field dynamics does not create new correlations except of those that
generating by initial correlations. It was also proved the property known as a propagation of
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initial chaos, which underlies in mathematical derivation of effective evolution equations of
complex systems [4, 18].

We note that the developed approach is related to the problem of a rigorous derivation
of the non-Markovian kinetic-type equations from underlying many-constituent dynamics
which make it possible to describe the memory effects of collective dynamics of complex
systems modeling active soft condensed matter.

We remark also that in papers [19, 20] it was developed two other approaches to the
description of the process of the propagation of initial correlations in a mean field limit. In
paper [19] the process of the propagation of initial chaos was established within the
framework of the evolution of marginal observables (in [21] this result was generalized on
case of initial states with correlations) and in paper [20] the property of the propagation of
initial correlations was proved within the framework of the description of the evolution by
means of a one-particle (marginal) density function governed by the generalized kinetic
equation.
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Anorauisa. B. I. I'epacumenxo. IIpo po3noeciodrcennn nouamkosux Kopenauii 6
AKMUGHUX M’AKUX peuoguHnax. J{na cucmemu 0a2amvox CMOXACMUYHUX MAPKOBCHLKUX
CMPUOKONOOIOHUX NPOYecis, SIKOW MOOETOEMbCA KOIEKMUBHA NOBEOIHKA CKAAOHUX CUCTEM
Mamemamunoi 6ionoeii, OnUCano npoyec NOUUPEeHHs NOYamKosux Kopenayiu. Pozeunymuil
nioXi0 IPYHMYEMbCA HA NOOYO0BI CKEUNIH2080i epanuyi cepeonbo2o nojs 0Jisk NOCII008HOCMI
MAP2IHATLHUX KOPeNaAYitHUX (QYHKYIU, AKa € HenepmypOamusHum pose szkom 3aoadi Kowii
ons iepapxii neninitinux pienans BBIKI (Bozonobos — Bopu — Ipin — Kipxeyo — leon).
Jlosedenns ompumanux pe3yiomamis [pYHMYEmMobCs HA 8IONOGIOHUX CPAHUYHUX Meopemax O/
KVMYIAHMIE ACUMAMOMUYHO 30VPEHUX 2pyn HEeNiHIUHUX Onepamopis, AKUMU ONUCYEMbCS
OuHamixka Kopenayill CKiH4eHOi KilbKOCMI MAPKOBCbKUX CMPUOKONOOIOHUX npoyecie ma Ha
BUKOPUCMAHHI S68H020 GUNISI0Y MBIPHUX ONepamopie po3Kiadié 8 psod O0as MAPiHATbHUX
KOpenayiuHux QyHxyii.

YV eunaoxy nouamkosux cmauie, AKUMU XAPAKMEPE3VIOMbCs KOHOEHCOBAHI CMAHU
AKMUBHUX M SKUX PEYOBUH, a came, SKI ONUCYIOMbCL 0OHOYACIMUHKOBOI0 (DYHKYIEIO PO3NOOLNY
ma KopensyiuHumMu QYHKYIsAMU, 8 CKelIIHe08IU ePAHUYL CepeOHb0o20 NOJisl BCMAHOBIEHO A6HULL
BURTIAIO SPAHUYHUX MAPSUHANHUX QYHKYIU po3nodiny. B 3a3nauenomy Habaudicenni esonoyis
CMaHy cucmemu ONUCYEMbCSL 3d OONOMO20I0 2PAHUYHOI 0OHOYACMUHKOB80I PYHKYIT po3nodiny,
saKa € po3e’askom 3aoaui Kowi Ons memapkoecvkozo Kinemuunoz2o pieHanHA Bracoea 3
NOYAMKOBUMU  KOpenayiamu. J{na epaHudyHux MapeuHanioHux @QYHKYit po3snooiny makotc
8CMAHOBIEHO BACMUBICMb, BI00MY 5K 6AACMUBICMb NOWUPEHHS NOYAMKOBO20 XAOC).
Pozeunymuii nioxio nog’sazanutl 3 npobiemor cmpo2oco 6ueedeHHs 3 OUHAMIKU CKIAOHUX
cucmem KIHEMUYHUX DIBHAHb HEMAPKOBCLKO2O0 MUNY, AKI 0aiomb MOXNCIUBICb ONUCYS8AMU
ehekmu nom ’ssmi KOJIeKMUBHOI NOBEOTHKU AKMUBHUX M SIKUX KOHOEHCOBAHUX PEUOBUH.
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SEVERE PLASTIC DEFORMATION BY KOBO METHOD -
ESTIMATIONS AND MODEL

A new phenomenological model for the description and simulation of Severe Plastic
Deformation (SPD) is developed based on the inverse dependence of the material's viscosity
on the concentration of point defects (the higher the concentration, the less the viscosity). In
this case, the local concentration of point defects is determined by (1) the intensity of
deformation, (2) the annihilation of interstitial defects and vacancies, (3) the absorption of
defects at dislocations, (4) diffusive redistribution of defects. The solution of the
corresponding system of nonlinear differential equations for the field of defect concentrations
and the differential equation for the velocity field at a given rate of deformation at the
boundary of the sample provides a non-equilibrium phase transition - a jump in viscosity and
a jump in the concentration of defects at a certain distance from the surface. In this case, the
width of the zone of reduced viscosity and increased defect concentration is proportional to
the surface velocity of the deformation. It is in this zone that it makes sense to consider the
material as a viscous medium.

Keywords: severe plastic deformation, interstitial defects, vacancies, diffusion,
viscosity, creep, nonlinear differential equations.

1. Introduction

An important example of nano-trend in science and technology during last decades is a
production of nano-grained metals by Severe Plastic Deformation (SPD) [1, 2]. The most
popular methods of SPD are ECAP (equi-channel angular pressing) and HPT (high-pressure
torsion). Less than 20 years ago Korbel and Bochniak from AGH (Cracow) suggested their
own method (KoBo) for extrusion of metals and alloys [3-5]. This method has something in
common with HPT, but torsion is oscillating: the external surface is subjected to periodic
rotations with a frequency of a few Hertz (say, 5 Hz) and amplitude of a few (6-8) degrees.
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