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V yinomy 0obpe 8i0meoproeEMbCs y MOOEN08AHHI MEMOOOM KIACMEPHOI OUHAMIKU AK OJis
sonvppamy 6Oe3 Odomiwkie, mak i 01 eonbghpamy 3 eyeneyem. Excnepumenmanvui nixu
BIOHOBNEHHA Ha Opy2oi cmaodii GIOHOBIEHHA OeeKmMHOI CcmpyKmypu 80oabphpamy
dopmyromoecs, 32i0HO 3 HAWUM OOCHIONCEHHAM, 3A80SKU B3AEMOOIL MOUKOBUX Oehekmie ma
amomis gy2neyio.
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BEHAVIOR OF MATERIAL WITH A MEMORY OF FORM AND
PSEUDOELASTICITY UNDER NONSTATIONARY LOADING OF THE BODY

A nonstationary thermo-elastic-plastic problem is examined for pseudoelastic bodies. The
key feature of theory consists in that the diagram of tension of deformations appears as a three-
unit broken line and can have a falling down segment. Thus the characteristic points of the
diagram depend on the material’s temperature and phase state. Such character of the diagram
leads to the discontinuous  solutions and as a result to the moving boundaries of phase
transitions. The example of thin stripe at uniaxonic tension is considered. It is shown that
deformation is not homogeneous through the stripe and its development depends on the material’s
properties. The got results confirm an idea that front of races change of deformation spreads with
permanent speed that depends only on mechanical properties of material.

Keywords: thermo-elastic-plasticity, pseudoelasticity, form memory, phase transitions.

1. Introduction

The list of alloys that exhibit pseudoelasticity includes Ni-Ti alloys and various copper,
iron, silver and gold-based alloys. Pseudoelasticity is the ability of a material to accumulate
deformations upon loading at a high temperature regime and then return to its original state
after unloading (through the hysteresis loop). The mechanism of this reduction is the
transformation from the martensite phase to the original austenite phase.

Such alloys as NiTi, CuZnAl, CuAINi, AuCd and others can restore deformations up to
3%. Important characteristics of some of these materials are internal damping,
pseudoelasticity and high yield strength. It is noted that the amount of experimental data of
high quality of macroscopic behavior of NiTi remains limited.
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A characteristic feature of the SPF material diagram under active loading is an area of
ideal plasticity (NiT1 stress-strain response at 70 © C [3]). Similar sections are also present at
unloading, but at certain temperatures.

2. Local diagram of pseudelastic material

To describe the local relationship between physical quantities, a model of an
elastoplastic body with a softening point under active loading and constant temperature was
used [1-3]. The temperature field of the body is assumed to be known, being obtained by
solving the corresponding problem of nonstationary thermal conductivity or from other
sources [2].
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Fig. 1. The local material diagram.

The table below gives the coordinates of the points is obtained on the basis of the
processing of the experimental data given in [3].

7°C | A(€%,0(GPa)) | B(e%,o0(GPa)) | D(e%,o(GPa)) F(e%,0(GPa))
100 1,00; 0,82 6,50; 0,82 6,05; 0,45 0,55; 0,45
90 1,00; 0,78 6,50; 0,78 6,03; 0,41 0,53; 0,41
80 1,00; 0,67 6,50; 0,67 6,07; 0,38 0,57; 0,38
70 1,00; 0,59 6,30; 0,59 5,81; 0,30 0,51; 0,30
60 1,00; 0,44 6,20; 0,44 5,72; 0,23 0,52; 0,23
50 1,00; 0,42 5,80; 0,42 5,16; 0,15 0,36; 0,15
40 1,00; 0,39 5,70; 0,39 4,88; 0,07 0,18; 0,07
30 1,00; 0,31 5,00; 0,31 4,00; 0,00 0,00; 0,00
20 1,20; 0,28 4,30; 0,28 3,10; 0,00 0,00; 0,00
10 1,40; 0,22 4,30; 0,22 2,90; 0,00 0,00; 0,00
0 2,00; 0,20 3,90; 0,20 1,90; 0,00 0,00; 0,00

When the temperature changes during the loading process, the transition from one
diagram to another occurs. Different local diagrams of the material can be used at different
points of the body.
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3. Statement of the non-stationary problem of the theory of thermo-elastic-
plasticity for a pseudoelastic material
Let us determine the velocity of the slow wave from which the plastic deformation field

propagates along the one-dimensional body xe [O;L]. On the edge x=0 the speed of
stretching the sample v ="V, is set and its edge x = L is fixed and here v=0.

In general, the required values are: the speed of movement in the axial direction v(x,?)
(the movement u(x,?) is determined if necessary by integration v(x,#) over time); axial stress

o(x,1); axial strain &(x,7) and temperature 7'(x,) . Here x €[0;L],7 €[0,0).

To determine the unknown quantities, we use a system of equations

Ee-Ko, (T-T,) npu € €[0,&],
ov 0o . Og Ov
p.E:E’g :Ezaa o=1E(¢-&)+o,-Ka,(T-T,) npu ge[gs,gc], (D
E(e-¢)+0.—Ka,(T-T)) npu ¢e(e., o),
T T
a—:aZ g ~+W.
Ot ox

Here, p— is the density of the material, E,E,,E; is the modules of the local material
diagram (Figure 1), as well as the coefficient of linear thermal expansion ¢, , which can
depend on temperature, W — source of heat, which is released as a result of a phase transition.

We pass in system (1) to dimensionless normalized quantities for which we retain the
previous notation

v:>1,g:>i,o-:>i,T:>£,x:>i,t:>£. (2)
v, Esr Ogr T. X, ,

Here v,,T,,x,,t, are some given scale values of displacement speed, temperature,
spatial coordinate and time. o,& (04 = E,(T,)€g,) The flow stresses of the material for
stress and deformation, determined at the 7' =T7,.

As a result of the transition to dimensionless normalized quantities (2), we rewrite the
system of equations (1) this way

ov_ 0o s, ov

LRy
ot Oox Ot Ox
E.e-K,o, (T-T) npu & €[0;&],
o=1E,(¢—¢g)+o,—K.0.(T-T)) npu ¢elese.], (3)

E.(e-¢)+0.-K.a.(T-T)) npu ge(gc;oo).

The notation

o, Vi, E(T) E,(T) E,(T)
k]*:—akz*: aEl*: s gy = sl =— ———»
pxl T xey T E@MY YT R@MY T BT "
a,T, E, a’
aT*: ’K*: ’k3*:t*_2’
Esr 1-2v X;

To simplify the calculations, we choose k,, =1. Then we can take
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E ¢
We use the finite-difference method. To numerically solve the system (3), we introduce
grids with respect to time t and coordinate x as follows [4]

o, :{t sl =1, + T30, :0;p:0;l;2;...},

p2 p+l
L

_ &)
WX X,,, =X, +h;x,=0; h=—;i=0;1;2;..n .
n

Then an explicit difference system equivalent to a complete system of partial
differential equations (3) can be written as

V= v btk A(07), 67 = 7 + A7), (6)

T =T" +thk, u(T?)+ WL,
We shall formulate the boundary conditions for the heat equation as the conditions for
free heat exchange
6_T =0; x=0;L.
ox
From this we obtain the calculated difference formulas on the boundary of the rod

Iy = (k1 =KL+ k) Tk 5 T = (T =KL + k) Tk (7)

The magnitude of the stress at an arbitrary instant of time is determined explicitly by the
corresponding formula in (3). In the calculation formulas (6) we introduce the notation for
difference operators approximating the first derivatives with respect to the coordinate. They
can be set in various ways.

Here, to approximate the derivatives, we obtain the following difference formulas [4].
Equations (7) use the coefficients determined by using the spline function. If cubic B-splines
that have a fourth order of approximation are used, then

k=11 k,=18; k; =9; k, = 2.

In the case of using strained splines that have the fifth order of approximation
k, =11,2646; k, =18,4641; k, =9,1344; k, =1,9349.

4. Results of numerical experiment

Let’s consider a series of numerical results. In Fig. 2, the left column shows the time
variation of the deformation and stress fields under active loading. The transition from A to B,
austenite to martensite (A4 —> M ) occurs at V,=-1,3v,. The right column shows the
deformation and stress field changes in time during the reverse transition (M — A ) from D to
Fat V,=17v,. Lines 1 give the distribution of deformations along the length of the rod at
fixed instants of time, and lines 2 show the corresponding distribution of stresses in the body.

The obtained results support the assumption that the front of the stepwise change in

strain propagates at a constant rate, which depends only on the mechanical properties of the
material.
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Fig. 2. Distribution of stresses and plastic deformations for different instants of time

(t=0,001).
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The change in the temperature field along the axis of the rod for different instants of
time is shown in Fig. 3.
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Fig. 3. The time variation in the temperature field due to heat release.

Here, the temperature field arises in connection with the stress-strain state and is due to
heat generation during the sequence of phase transitions (jumps in the diagram from
Composition A to B). The results are presented in dimensionless form, the temperature at the
phase transition point is assumed to be equal to the conventional unit. Numbers 1, 2, 3
indicate the curves for the specified time.

5. Conclusions

A version of the model of behavior of a pseudoelastic material has been developed and
experimentally substantiated. In this model, the possibility of quantitative evaluation of the
associated interactions between stresses, temperature, deformation and material loading rate is
built that is suitable for modeling the continual level.

We obtained the numerical confirmation that the front of the stepwise change in the
strain propagates at a constant rate that depends only on the mechanical properties of the
material.
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Recurrent formulas allow us to obtain the third (for temperature) and fourth (for the
velocities of displacements, stresses and deformations) order of approximation of the method
with respect to the coordinates.

When constructing the solution of the complete system of thermomechanical equations,
all unknown quantities were represented as spline functions [4]. This makes it possible to
write more accurate difference expressions for the differential operators that make up the
difference schemes and, on the whole, increase the accuracy of the computation by
coordinates by at least an order of magnitude.

Given the same accuracy of calculations with the classical finite-difference method, this
method allows us to obtain results faster by virtue of the choice of larger steps of integration
along the coordinates, which leads to a significant decrease in the number of nodes of the
spatial grid used.
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Anorauin. ITempoe A. /l. Ilosedinka mamepuany 3 nam’smmio gopmu ma
HCEBOONPYIHCHICMIO NpU  HECMAUIOHAPHOMY Hasanmaxcenui min. Poszensioaemovcs
HeCmMayioHapHa mepMo-npYyA*CHO-NIACMUYHe 3adaya ONsi minl 3 nam’smmio  Gopmu.
Ocobaugicms meopii noaseae ¢ momy, wo odiazpama Hanpyeu oegpopmayii 6 mamepianibHil
Mmoyyi npeocmasiiacmovcs y Uil MpUIAHKOB8OI IAMAHOI I Modce Mamu cnaoaiody OLISHKY.
Ipu yvomy xapaxmepui mouxku odiazpamu 3anrexcams 6i0 memnepamypu i ¢azoeoco cmawy
mamepiany. Takuu xapakmep Oiaepamu npu3e00UmMs 00 PO3PUBHUX PIUEHDb | K HACTIOOK 00
DPYXausux medxc gazosux nepexoodis. Pozensinymuil npuxkiad moHKOI cmyeu npu 0OHOOCHOMY
posmszysanni. OmpumaHi pezyrbmamu NiOMeepoN*CYIoms OYMKY Hpo me, wo Gponm
CcmMpuOKOonooionoi 3miHU  depopmayii nowuproemMbcs 3 NOCMIUHON WBUOKICMIO, KA
3aneNcums auute 8i0 MexaHiyHux 61acmueocmett mamepiany i memnepamypu.
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