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PHYSICS-INFORMED MACHINE LEARNING FOR NANOSCALE TRANSPORT
PHENOMENA: CHALLENGES, APPROACHES, AND FUTURE PERSPECTIVES

Modeling nanoscale transport phenomena presents a critical challenge in which classical
continuum equations fail, and high-fidelity solvers are computationally prohibitive. Physics-
Informed Machine Learning (PIML) has emerged as a transformative approach to resolve this
dilemma by synergistically fusing sparse experimental data with the governing laws of first-
principle transport models. This review provides a comprehensive overview of how PIML —
especially physics-informed neural networks (PINNSs), operator-learning methods, and multi-
fidelity frameworks — accelerates nanoscale transport analyses from BTE-based phonon
transport to ballistic—diffusive heat transfer and near-field radiative effects. We address
persistent data bottlenecks in nanomaterial research, including noisy measurements and high-
dimensional partial differential equation (PDE) formulations, and present advanced strategies
such as domain decomposition and hybrid mechanistic — Machine Learning (ML) methods to
enhance the flexibility and scalability of these emerging approaches. Finally, we outline the
current gaps in the field, from uncertainty quantification to the development of real-time digital
twins, and chart future research directions poised to unify quantum-scale simulations,
experimental metrology, and deep learning. By embedding physical constraints directly into
the learning workflow, these physics-informed methods offer a transformative pathway for
optimizing nanoscale transport, unlocking unprecedented opportunities in material design and
device engineering.

Keywords: Nanoscale transport phenomena, Nanomaterials, Machine Learning (ML),
Physics-Informed Neural Networks (PINNSs), Deep learning (DL)

1. Introduction

1.1 Motivation and Scope

At nanometer-length scales, the mechanisms governing heat transfer, mass diffusion, and
charge transport deviate significantly from the established macroscale paradigms. In crystalline
semiconductors, for instance, heat is largely carried by phonon-quantized lattice vibrations,
whose mean free paths can rival or exceed device dimensions; for instance, in silicon, the
average phonon mean free path at room temperature can be over 40 nm, while the gate length
of a modern transistor is already less than 10 nm. This significant mismatch means that heat
transport is dominated by ballistic effects and boundary scattering rather than classical diffusion
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[1]. Under such conditions, the standard Fourier law breaks down, and a host of additional
effects comes into play: boundary scattering at interfaces, ballistic conduction through defect-
limited regions, and quantum confinement in ultrathin layers. These nuances are not limited to
phonons; electrons, especially in downscaled transistors, can also exhibit ballistic transport over
distances comparable to their inelastic scattering lengths [2]. Even in layered van der Waals
crystals, breaking the symmetries at the atomic level introduces unconventional conduction
pathways that lead to pronounced non-linear or non-reciprocal transport responses [3].

The development of modern nanoelectronics, thermoelectric devices, and advanced
materials hinges on the understanding of these exotic transport regimes. Accurately predicting
the heat flow in integrated circuits is crucial for preventing thermal bottlenecks and improving
reliability, whereas optimizing phonon transport can enhance the performance of thermoelectric
generators or thermal barrier coatings [1, 4]. In phase-change memory cells, ultrafast nanoscale
heating orchestrates the switching process, necessitating precise models of the thermal
conduction and melting dynamics. Near-field radiative transport, relevant in sub-micrometer
gaps, opens avenues for energy harvesting beyond the blackbody limit. Such phenomena are
deeply tied to quantum mechanics, ballistic-diffusive transitions, and interfacial phenomena,
placing them well outside the comfort zone of classical equations.

Traditional numerical methods have made tremendous strides in resolving these issues.
Molecular Dynamics (MD) simulations offer atomistic insights into phonon scattering, but
require formidable computational resources and may overestimate high-frequency mode
populations at low temperatures [1, 2]. Monte Carlo schemes treat phonons or electrons as
particles with probabilistic scattering rules, thereby elucidating boundary effects and phonon-
electron interactions for both diffusive and ballistic regimes [2]. Similarly, solving the
Boltzmann Transport Equation (BTE) has illuminated how boundary scattering and interface
conductance shape the nanoscale thermal conductivities [4]. However, as device features
continue to shrink into the quantum regime, balancing the accuracy and computational cost
becomes more challenging. Moreover, many properties, such as interface scattering rates or
anisotropic lattice constants, require parameter fitting, which introduces uncertainties that
classical solvers alone cannot easily reconcile [5].

Simultaneously, experimentation has evolved to probe these finer scales. Techniques,
such as time-domain thermoreflectance (TDTR), help isolate quasiballistic phonons by
measuring localized temperature changes under laser heating [1, 4]. Scanning thermal
microscopy (SThM) captures spatially resolved heat flux albeit with calibration complexities.
Fabricating specialized nanostructures, such as grating heaters, enables the systematic
characterization of phonon mean free path distributions [4]. However, the synergy between
experimental insight and theoretical modeling remains hampered by data sparsity and the high
dimensionality of the parameter spaces. This juncture has sparked growing interest in machine
learning (ML) methods that can both incorporate physics-based constraints and leverage
whatever data are available, whether from simulations, reduced-order models, or actual
measurements [5-8].

Recognizing the multifaceted challenges at hand, ranging from quantum effects to short
mean free paths and steep interface gradients, this review explores how emerging physics-
informed ML techniques can bridge the gap between computationally intensive solvers and
incomplete experimental data. This review argues that the rise of Physics-Informed Machine
Learning (PIML) is more than an incremental advance; it represents a paradigm shift in the
modeling workflow itself. The classical approach is a one-way street that defines physics,
discretizes it, and solves for a single instance. In contrast, PIML enables a flexible, inferential
workflow where partial physical laws, sparse data, and governing equations are fused to not
only predict system behavior, but also to discover unknown parameters and unmodeled physics.
These methods create a synergistic bridge between the rigor of first-principles models and
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flexibility of data-driven approaches, paving the way for solving previously intractable
problems in nanoscale transport. These approaches aim to preserve the interpretability of the
governing equations while enhancing flexibility in parameter inference and uncertainty
quantification. Our discussion spans nanoscale heat conduction, electron—phonon interactions,
and near-field radiative exchange, outlining why conventional continuum-based models often
fall short, and how ML-driven frameworks may offer more adaptive solutions.

To that end, the following sections delve deeper into fundamental transport models at the
nanoscale and highlight recent breakthroughs. Ultimately, these complexities do more than call
for a better solver, and they demand a new scientific workflow. This review demonstrates how
Physics-Informed Machine Learning provides this new paradigm, guiding the design,
interpretation, and optimization of next-generation nanoscale systems by transforming how we
fuse theory with data. We will first establish the fundamental limitations of classical methods
that created this need, and then explore how specific PIML approaches directly overcome these
bottlenecks, paving the way for solving previously intractable problems in nanoscale science.

1.2 Overview of Nanoscale Transport Phenomena

Nanoscale transport phenomena encompass a rich array of physical processes that deviate
significantly from traditional continuum-based descriptions of heat and mass transfer. At
dimensions of the order of tens of nanometers or below, familiar concepts such as Fourier’s law
of heat conduction can become insufficient, as carriers (phonons, electrons, and even photons)
experience scattering events and boundary effects in ways not typically observed at larger
scales. The transition from diffusive to ballistic transport occurs because the dominant carrier
mean free paths are comparable to or even exceed the material dimensions. As a result, carrier
scattering can be strongly suppressed, yielding subcontinuum regimes in which classical laws
break down. This section provides an overview of key nanoscale transport phenomena,
highlighting ballistic versus diffusive behaviors, the role of phonon scattering and quantum size
effects, and several industrial and research applications that motivate a deeper understanding
of such processes.

A core distinction in nanoscale conduction is whether the heat carriers move diffusively
or ballistically. Under diffusive conditions, energy transport follows a near-equilibrium picture,
which is often described by Fourier or Fick equations with bulk material properties.
Specifically, Fourier's law relates the heat flux vector, mathbfq, to the temperature gradient VT
via the thermal conductivity k:

q = —kVT 1)

Similarly, Fick's first law describes the mass diffusion, linking the diffusion flux J to the
concentration gradient Ve through the diffusion coefficient D:

J=-DVg )

These linear, local relationships form the basis of classical continuum models, but fail to
capture the non-local and non-equilibrium phenomena prevalent at the nanoscale.

In contrast, ballistic carriers traverse the medium with minimal scattering, rendering
classical diffusion equations inaccurate, unless carefully modified. As described by Cahill et al.
[1], ballistic effects become increasingly prominent when device features approach the mean
free path of dominant phonons, which, for many crystalline semiconductors, can range from a
few nanometers to several micrometers. Moreover, even within ostensibly diffusive materials,
boundary scattering at surfaces or interfaces can create so-called “quasiballistic” regimes.
Incorporating boundary reflections and partial phonon transmission is essential for predicting
temperature fields and thermal resistance at the nanoscale.

Phonon scattering events, which include boundary, defect, and phonon-phonon
scattering, critically affect the thermal conductivity of the nanostructures. Carbon nanotubes
(CNTSs), for instance, exhibit exceptionally high intrinsic thermal conductivities, yet real-world
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devices often exhibit lower effective values because boundary conditions and substrate
interactions shorten the phonon mean free paths [2]. In single-wall carbon nanotubes
(SWCNTSs), ballistic phonon transport can dominate for tube lengths of tens or hundreds of
nanometers. However, as Lukes and Zhong note, simulation length and boundary condition
choices strongly affect the perceived thermal conductivity, underscoring that “size matters” in
a literal sense for these one-dimensional systems [9]. Similarly, in two-dimensional materials,
wave-like phonon interference can either enhance or suppress heat conduction, depending on
the arrangement of interfaces, defects, and atomic layers.

Beyond phonons, quantum size effects in electron transport also come to the fore in
nanoscale systems, such as ultrathin films, nanowires, or quantum wells. When the electron de
Broglie wavelengths become comparable to the device thickness, energy sub-bands form, and
the scattering rates can differ markedly from those of the bulk. This condition is routinely met
in contemporary devices. For example, the confinement layer in a silicon MOSFET can be as
thin as 5 nm, which is significantly smaller than the electron’s thermal de Broglie wavelength
of approximately 17 nm at room temperature.

Such phenomena underpin the functionality of quantum devices including single-electron
transistors and nanosensors. Non-linear or rectification effects can arise from broken
symmetries in low-dimensional materials. Ideue and lwasa elaborated on how inversion
symmetry breaking in van der Waals heterostructures drives non-linear electric transport,
resulting in phenomena such as non-reciprocal conduction or second-harmonic generation [3].
While these effects primarily involve charge carriers, the underlying principle—namely, that
reduced dimensions expose quantum degrees of freedom— also applies just as well to phonon-
based or photonic devices.

From an industrial and research standpoint, understanding nanoscale transport is
indispensable for various applications. One prominent example is the transistor heat
management in modern integrated circuits. As transistors scale down, localized hot spots can
form at gate lengths of only a few nanometers, which limits the device performance and
reliability. Here, ballistic and subcontinuum effects may exacerbate the thermal resistance in
gate regions, prompting the need for advanced thermal metrology and modeling that go beyond
traditional diffusive assumptions [1]. Thermoelectric materials, which convert heat into
electrical energy, also rely on manipulating heat carriers at the subcontinuum level. Lowering
the thermal conductivity while retaining good electrical conductivity often involves engineering
nanostructures that scatter phonons more strongly than electrons. The success of this "phonon
engineering” strategy is quantified by the dimensionless figure of merit, ZT, where
nanostructuring has led to dramatic improvements, while bulk silicon has a negligible ZT of
approximately 0.01, and silicon nanowires have demonstrated values approaching 1.0, an
increase of nearly two orders of magnitude. Simultaneously, sensors and quantum devices
leverage ballistic transport to achieve higher sensitivity or lower noise, capitalizing on a reduced
scattering environment.

Practical examples of subcontinuum transport extend to measurements of phonon mean
free path (MFP) distributions, which are crucial for accurately modeling heat conduction in
nanostructured systems. Zeng et al. employed quasiballistic phonon transport in patterned
grating structures to invert the measured thermal signals and reconstruct the MFP distributions
of materials such as crystalline silicon [4]. By confining heat pulses to narrow metallic lines
and tracking the resulting transient temperature signatures, one can observe how long MFP
phonons escape the heated zone without scattering, thus reducing the apparent thermal
conductivity. Repeating these measurements with varying line widths or geometries yields
multiple “effective” thermal conductivity values, from which a Boltzmann Transport Equation-
based model infers the underlying phonon spectrum. Such approaches are already being
extended to complex systems, such as alloys, superlattices, and strongly disordered materials,
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where direct theoretical predictions (e.g., from first-principles density functional theory)
become computationally daunting.

Quantum-size effects are vital in emerging electronics and optoelectronics. Low-
dimensional van der Waals systems—graphene, transition-metal dichalcogenides, and
associated nanotubes—support a host of phase transitions, spin—orbit couplings, and
topologically driven properties, each manifesting differently when conduction is confined to
one or two dimensions [3]. These quantum features can be harnessed to create high-
performance sensors, rectifiers, and spintronic elements that operate at energies far lower than
those of conventional semiconductor junctions. Thus, understanding subcontinuum conduction
bridges fundamental research into quantum phenomena with the practical engineering of next-
generation devices.

Overall, at the nanoscale, the conduction phenomena reflect a tapestry of ballistic wave-
like behavior, subcontinuum scattering, and quantum mechanical constraints. Investigations in
this realm benefit from advanced experimental approaches such as time-domain
thermoreflectance (TDTR) and scanning probe thermometry, together with robust theoretical
frameworks grounded in the Boltzmann Transport Equation or atomistic simulations [1, 4, 9].
Designing materials and devices to exploit or mitigate these effects requires multidisciplinary
expertise spanning material science, applied physics, and device engineering. Deeper insights
into boundary scattering, phonon coherence, and non-linear electronic responses will likely
shed light on how to tailor thermal and electrical conduction in ways that are deemed
impractical. This new understanding in turn fuels the development of high-performance
transistors, energy-efficient thermoelectrics, nanoscale sensors, and quantum-based
components—each demonstrating that “less” can indeed mean “more” when it comes to
leveraging unique size-driven transport phenomena.

By illuminating the interplay between ballistic and diffusive regimes, phonon scattering
mechanisms, and quantum size effects, researchers are increasingly able to engineer conduction
pathways. This sets the stage for the following sections, which delve more deeply into the
models, measurement techniques, and design strategies that enable manipulation and
application of nanoscale transport in real-world devices.

2. Background and Classical Approaches

2.1 Mathematical Models for Nanoscale Transport

At nanoscale dimensions, the foundational equations of heat transfer require
modifications that account for non-classical effects, such as ballistic phonon transport, quantum
confinement, and strong boundary scattering. Researchers have developed a suite of
mathematical models and computational schemes to address nanoscale transport, including the
heat equation with quantum corrections, Boltzmann Transport Equation (BTE), and various
diffusion equation variants tailored to small-scale phenomena. The critical length scale
governing the transition from classical to nanoscale transport is the phonon mean free path
(MFP). As shown in Table 1, the MFPs for common materials can range from tens to hundreds
of nanometers, which is a scale comparable to that of modern nanodevices.

Classical heat transfer formulations, rooted in the standard heat equation, treat energy
carriers as diffusing particles in a local thermodynamic equilibrium. While this assumption
suffices for macroscopic systems, it can break down when the characteristic length scales
approach or fall below the mean free path of the phonons or electrons. Consequently,
researchers have developed a suite of mathematical models and computational schemes to
address nanoscale transport, including the heat equation with quantum corrections, Boltzmann
Transport Equation (BTE), and various diffusion equation variants tailored to small-scale
phenomena.
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Table 1
Taoauuns 1
Characteristic mean free paths (MFP) of phonons for some materials at room temperature
(300 K).
Xapaktepuuii cepeinii ButbHUN 1pobir (MFP) dhoHoHIB a5 1eskux MaTepiaiiB 3a KIMHATHOT
temneparypu (300 K).
Material Average MFP (nm) Notes
Silicon (Si) ~40 - 300 Depends on purity and structure
Diamond (C) ~300 High thermal conductivity
Gallium Arsenide (GaAs) ~20 Stronger phonon scattering
Graphene > 750 Very high thermal conductivity

2.1.1 Heat Equation with Quantum Corrections

The classical heat diffusion equation provides the foundation for macroscopic thermal
analysis:

pCp 2 =V - (kpurVT) + q ()

where p is the density, ¢, is the specific heat capacity, T is the temperature, k., is the
bulk thermal conductivity, and g is the volumetric heat-source term. This equation assumes that
the heat carriers (e.g., phonons) travel diffusively.

However, this assumption breaks down when the characteristic dimension of the system
L becomes comparable to or smaller than the phonon mean free path A. In this subcontinuum
regime, boundary scattering suppresses the contribution of long-MFP phonons, reducing the
overall thermal conductivity. To account for this, the bulk conductivity k., is often replaced
by the size-dependent effective thermal conductivity k.rr. A common way to express this
dependency is through the Knudsen number Kn = A/L.

For example, for a thin film, a simplified model derived from the Boltzmann Transport
Equation yields:

4 -1
kerr(Kn) = Ky (1 3K n) (4)
Such modifications, while phenomenological, allow the heat equation to approximate
subcontinuum effects without resorting to more computationally expensive kinetic solvers. The
practical impact of this size effect is illustrated in Fig. 1, which shows a dramatic reduction in
the thermal conductivity of silicon nanowires as their diameter decreases.
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Fig. 1. Effective thermal conductivity k. of silicon nanowires at 300 K as a function of
nanowire diameter. Solid line with circle markers shows nanowire values for diameters 22,

37,56 and 115 nm (approximately 12, 20, 30 and 60 % respectively). The dashed horizontal

line indicates bulk silicon, k. = 146% . The right-hand axis reports the same data as a

percentage of the bulk value, computed as 100 - k.¢/ kyi (the four points correspond to
~8%, ~13%, ~20% and ~40%).
Puc. 1. EdextuBHa TemionpoBiaHIiCTh k. KpeMHiIeEBUX HaHOIpOTIB mpu 300 K sk
byskis giamerpa HanoApoTy. CyIliyibHA JTiHIs 3 KPYTJIMMU MapKepaMu MOKa3ye 3HauUCHHS
HAHOAPOTIB JuIs AiameTpiB 22, 37, 56 ta 115 um (mpubmmzuo 12, 20, 30 Ta 60

wo. . . . .
ﬁBlI{HOBI[{HO). HITpuxoBa ropu30HTANbHA JIiHIS BKa3ye HA 00'€MHUI KpeMHIH, Ky, =

w . ) .. )
146 — [TpaBa Bich MmoOKa3ye Ti 3 JaHl y BIICOTKAxX BiJ] 00'€éMHOTr0 3HaYEHHS, 0OUUCICHOTO

sk 100 - kegr/ Ky (90THPHU TOUKH BianosinawTh ~8%, ~13%, ~20% ta ~40%).

2.1.2 Boltzmann Transport Equation (BTE)

Arguably, the most comprehensive framework for analyzing nanoscale heat conduction
is BTE, which tracks the distribution function of energy carriers (e.g., phonons and electrons)
in the phase space. In particular, phonon BTE provides a way to incorporate scattering
mechanisms—phonon — phonon interactions, boundary scattering, and impurity scattering—to
model heat transfer in crystals and nanostructures. The general form of the phonon BTE can be
written as

of _ (of

E ol Ug ) vrf - (at)coll (5)

Here, f(r, k, t) is the non-equilibrium phonon distribution function, which depends on
position r, wavevector k, and time t. vg is the phonon group velocity, and the term on the right,

— , represents the rate of change in f owing to scattering events (the collision operator).
o ) ts the rate of ch to scatt ts (the coll t
co

at

Although BTE is conceptually straightforward, the collision term is a complex integral
that accounts for all possible scattering mechanisms. To make the BTE tractable, researchers
typically adopt simplifications such as Relaxation Time Approximation (RTA). Within the
RTA, the collision operator is simplified to

(%) ~-LF ©)

at T
where f, is the equilibrium (Bose-Einstein) distribution and t is the relaxation time,
which represents the characteristic time for the distribution to return to equilibrium via
scattering. Researchers typically adopt simplifications such as the relaxation time
approximation (RTA) to make BTE tractable. In RTA, each phonon mode relaxes toward
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equilibrium on a characteristic timescale. This simplification can yield relatively accurate
results for many bulk materials, although it can underestimate the effects of normal
(momentum-conserving) scattering processes and ballistic transport on small scales. Moreover,
at nanoscale boundaries, phonon reflection, transmission, and partial specular scattering
complicate the formulation of the boundary conditions. These effects may induce pronounced
temperature jumps, flux slip, or interfacial resistances that deviate substantially from
macroscopic intuition.

Progress in first-principles calculations has enabled parameter-free BTE solvers, such as
those described in [10], which combine density functional theory with iterative solution
schemes to capture three-phonon and isotope scattering across entire Brillouin zones. Such ab
initio approaches, which are computationally expensive, have demonstrated predictive power
for the lattice thermal conductivity in both bulk crystals and nanowires. On the more
engineering-oriented side, approximate BTE solutions, hybrid Monte Carlo-diffusion
techniques [12], and data-driven methods [13] provide flexible routes for modeling intricate
nanoscale geometries without incurring the full expense of a purely ab initio framework.

2.1.3 Diffusion Equation Variants

Even with the availability of robust BTE solvers, diffusion-like equations remain
pervasive in practical device simulations. In many situations, Fourier’s law or slightly modified
versions that allow for partial ballistic effects are employed. For example, in “two-step” or
“multiscale” modeling strategies, a high-fidelity kinetic or Monte Carlo solver is applied near
boundaries or in hot-spot regions where ballistic phenomena dominate, whereas a simpler
diffusion model suffices in the bulk. As demonstrated in [11], such approaches are crucial for
thin-film devices where the film thickness rivals the phonon mean free path. In these regimes,
the classical equation often fails to predict the heat flux accurately, necessitating corrections for
the boundary scattering and ballistic transport.

A further refinement is the inclusion of hyperbolic terms in the heat equation, which is
sometimes introduced to account for finite thermal propagation speeds. While these hyperbolic
“wave-like” models capture certain transient effects, they have limited approximations.
Rigorous solutions require capturing the full phonon distribution, as indicated by the radiative
transfer-based approaches discussed in [11]. However, for rapidly prototyped microscale
designs, diffusion equation variants offer a balance between computational simplicity and
partial accuracy, thereby guiding more advanced simulations or experiments.

2.1.4 Concluding Remarks

In summary, modeling nanoscale heat transport requires a spectrum of mathematical
approaches, ranging from modest corrections to classical diffusion equations to full-phonon
Boltzmann transport simulations. The appropriate choice depends on the geometry, temperature
range, scattering mechanisms, and the desired accuracy. While the heat equation with quantum
corrections can offer expedient solutions in near-diffusive conditions, the BTE is a more
fundamental framework for capturing ballistic effects. Hybrid or multiscale strategies that
integrate Monte Carlo or BTE solvers near boundaries with bulk diffusion are increasingly
attractive for realistic device-level studies. Looking ahead, the expansion of first-principles
BTE solutions [10], development of novel Monte Carlo-diffusion hybrids [12], and emergence
of physics-informed neural networks [13] all point to a future where nanoscale heat conduction
can be modeled with both speed and fidelity. Such advances are essential for guiding the
thermal management and design of next-generation electronic and photonic devices.

The confluence of these challenges, from computational complexity to reliance on
unknown parameters, creates an urgent need for a new modeling paradigm that can bridge the
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gap between accuracy and computational cost. This is precisely the niche that physics-informed
machine learning methods are poised to fill.

2.2 The Computational Bottlenecks Necessitating a New Paradigm

Traditional numerical methods, such as molecular dynamics (MD), Monte Carlo (MC),
ballistic transport models, and hybrid continuum-atomistic approaches, have provided
invaluable insights into nanoscale phenomena. However, each approach has inherent
limitations when it comes to modeling the full complexity of nanoscale partial differential
equations (PDEs) and multiphysics problems. MD methods, for instance, capture atomistic
details with high fidelity but are constrained by immense computational costs and short time
scales, typically on the order of nanoseconds or microseconds [14]. This method is based on
numerically integrating Newton's second law of motion for a system of N atoms:

dZTl'
miﬁ = Fi = _vriv(rl;rz' ""rN) (7)

where m;, r;, and F; are the mass, position, and force acting on atom i, respectively. The
force was calculated as the negative gradient of the interatomic potential energy function V,
which is the most critical input to the simulation.

As simulations grow in size and complexity, whether investigating protein folding or
thermal transport in semiconductor devices, the time-step requirements and sheer number of
atoms become prohibitive. In addition, classical MD relies on force fields and potential
functions that may not account for all relevant quantum effects. Although quantum corrections
can improve accuracy, they add layers of computational overhead that are not always feasible
to implement.

Monte Carlo (MC) methods approach the transport problem differently, particularly for
scattering-dominated regimes, where phonons, electrons, or other carriers undergo numerous
random collisions. By tracking particle trajectories through probabilistic scattering events, MC
can capture a wide range of transport processes [1]. The simulation loop for a single particle
(e.g., a phonon) follows a "free-flight and scatter" algorithm governed by the scattering rate
I' = 1/t. The probability of a particle traveling for time t without scattering is given by an
exponential distribution:

P(t)=e 't (8)

In each step, a free-flight time is sampled from this distribution, the particle's position is
updated, and then a scattering event is simulated by randomly selecting a new state (e.g., new
wavevector) based on predefined probabilities for different scattering mechanisms.

However, randomness at the core of the method can lead to significant variance in
simulation outcomes, necessitating large sample sizes and longer runtimes to achieve
statistically reliable results. This stochastic character becomes especially problematic when
exploring delicate features, such as electron—phonon non-equilibrium in transistors or heat
generation in carbon nanotubes. Although variance reduction techniques exist, they do not fully
eliminate the trade-off between simulation accuracy and runtime.

Ballistic transport models are at another extreme, where scattering is largely neglected or
drastically simplified [2]. These models have very small structures, such as nanowires or
channels shorter than the mean free path, where carriers can traverse the domain without
frequent collisions. However, once real devices extend beyond purely ballistic regimes or
include multiple interfaces, the assumptions underlying purely ballistic equations fail to capture
important scattering, boundary resistance, or interfacial phonon transmission phenomena.
Consequently, ballistic treatments often yield overly optimistic estimates of the conductivity or
underestimate the severity of localized heating in semiconductors.

Hybrid continuum-atomistic approaches aim to bridge scales by coupling classical PDE-
based solvers (e.g., heat diffusion or fluid flow at the continuum level) with atomistic
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descriptions (e.g., MD or ab initio methods) at crucial hotspots [9]. In principle, these
techniques capture both large-scale device behaviour and local microscopic effects, offering a
comprehensive view of phenomena such as localized heat generation in transistors and phonon
scattering in nanocarbon materials. Nevertheless, building and maintaining such multi-
resolution frameworks can be exceedingly complicated. Researchers must ensure seamless
coupling between the continuum domain and atomistic region, exchanging boundary
conditions, fluxes, and state variables without introducing spurious reflections or numerical
instabilities. The computational overhead also increases because of the parallel management of
the two distinct solvers, each requiring specialized algorithms and tight integration.

In many of the most demanding nanoscale applications, from biomolecular simulations
to cutting-edge transistor design, these limitations can make standard methods insufficient for
the accurate and efficient prediction of real-world behaviour. For example, short timescales in
MD constrain researchers who want to model rare events such as protein conformational
changes or device aging. In MC simulations, the cost of achieving statistically convergent
results can balloon in large or complex geometries, particularly if near-field radiative effects or
boundary scattering significantly influence heat transfer. Ballistic modeling oversimplifies
these processes, ignoring essential scattering mechanisms and leading to incomplete energy
dissipation. Finally, hybrid methods, which are conceptually powerful, often demand a level of
expertise and computational resources that pose a barrier to their widespread adoption.

Taken together, these challenges underscore the need for novel frameworks that combine
physical rigor with computational efficiency, potentially leveraging physics-informed machine
learning or advanced reduced-order modeling. The ultimate goal is to capture the multiphysics
nature of nanoscale systems without sacrificing accuracy or incurring prohibitive computational
costs. As device miniaturization continues, and as multifunctional materials with intricate
internal structures gain prominence, the drive toward more holistic and efficient numerical
methods will only intensify. Despite their well-earned place in the researcher’s toolkit, today’s
traditional methods alone often cannot meet the demands of modern nanoscale science and
engineering, necessitating a fundamentally new strategy that can invert the traditional modeling
process: one that can learn from sparse data while respecting physical laws, handle immense
parameter spaces, and operate at the speed required for design and control. This is precisely the
niche that physics-informed machine learning is poised to fill in.

See Table 2 for a comparitive overview of classical and emerging methods.

Table 2

Taoaunsa 2

Comparative overview: of major modeling approaches for nanoscale transport—
essence, advantages, drawbacks (accuracy/speed/resources), and key limitations.
[TopiBHSUIBHUIN OTJIsIT OCHOBHUX MIJXO/IB IO MOJIEIIOBaHHS HAHOMACIITaOHOTO
TPAHCHOPTY — CYTb, IepeBaru, HeJOIIKU (TOUHICTH/IIBUAKICTE/PECYPCH) Ta KIIIOUOBI
0OMeXeHHSI.

Approach Essence Advantages Drawbacks / Key
(accuracy/speed) | Resource Needs Limitations

Molecular Atomistic Highest physics Extremely high Requires
Dynamics (MD) | simulation fidelity at atomic cost; limited interatomic
(no scale simulated potentials;
timescales
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continuum
assumptions)

quantum effects
costly to include

Monte Carlo Particle-base Captures Moderate-to-hig | Large samples
(MC) d transport | ballistic—diffusiv h cost; for
incl. e regimes; flexible | variance/noise convergence;
scattering geometries issues re-run for each
scenario
Deterministic Phase-space Predictive with Very high Complex
BTE PDE for ab-initio memory/CPU boundaries;
carriers scattering rates requirements stability;
detailed inputs
required
Continuum Diffusive Very fast; highly | Breaks down at No
(Fourier heat limit of scalable sub-MFP scales | ballistic/interfac
eq.) transport e jumps; only
near diffusive
limit
Hybrid High fidelity | Lower cost than Coupling Matching
multiscale where full high-fidelity | complexity and | flux/temperature
(MC/BTE + needed with everywhere tooling overhead | across interfaces
diffusion) reduced cost is non-trivial
elsewhere
Physics-Informe | NN+ PDE | Mesh-free; good Training Stiff/high-freq
d NNs (PINNs) residuals + for inverse instability; solutions;
(optional) problems; retrain per hyperparameter
data data-efficient instance sensitivity

3. Machine Learning Approaches for Nanoscale Transport Phenomena

3.1 Why Machine Learning in Nanoscale Transport?

Machine Learning (ML) methods have become pivotal in studying nanoscale transport
phenomena, ranging from phonon and electron transport to energy conversion processes at the
molecular or atomic level, owing to their ability to leverage partial experimental or simulation
data for complex, high-dimensional problems. Traditional numerical techniques, such as direct
simulation of the Boltzmann Transport Equation (BTE), require enormous computational
resources when handling complicated geometries, boundary conditions, or numerous physical
interactions across multiple length and time scales. Solving a non-linear BTE for a realistic 2D
geometry can take several hours or even days on a high-performance computing cluster,
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whereas a trained neural network surrogate can generate a solution of comparable accuracy in
a matter of seconds on a single GPU. ML-based surrogate models alleviate some of these
burdens by efficiently approximating the behavior of the system after training on data sampled
from high-fidelity simulations or carefully designed experiments. In the “small data” regime
often faced at the nanoscale, physics constraints and domain knowledge can further guide
machine learning models to remain physically consistent even when direct measurements are
sparse [5].

Another key advantage of ML for nanoscale transport is its real-time predictive
capability. Many micro- or nanotechnological applications, such as nanoelectronic thermal
management or drug delivery systems via nanofluidic channels, require rapid evaluation of
transport properties under dynamically changing conditions. By embedding ML surrogates into
multiscale modeling workflows, researchers can continuously update the boundary conditions
and handle local variability without solving the underlying physics from scratch. This not only
saves computational time but also enables data-driven decision-making in processes, such as
adaptive design or online process control [15]. For instance, if a neural network is trained to
predict the heat flux in a thermoelectric device under different contact resistances, then new
configurations can be explored instantly rather than running full-scale simulations each time.

The development of multifidelity and physics-informed machine learning approaches
further enhances the utility of ML for nanoscale transport. Multi-fidelity techniques combine
low-accuracy but cost-effective simulations with high-accuracy and smaller-scale data to strike
an optimal balance between computational efficiency and model reliability. Physics-informed
strategies (e.g., physics-informed neural networks or PINNSs) go a step further by incorporating
governing partial differential equations directly into the learning process, ensuring that the
output respects conservation laws and other physical constraints [5, 16]. Although such
methods have been more extensively applied to continuum mechanics and fluid flow, their
principles can be easily extended to modeling energy, mass, and charge transport at sub-
continuum scales.

Ultimately, machine learning holds promise for accelerating nanoscale transport research
by uniting partial observations, either from local measurements or partial micro- to macro-scale
simulation outputs, with robust surrogate models that reduce computational costs and enable
real-time analysis. As advanced manufacturing and nanotechnology continue to push design
boundaries, these data-driven approaches will become indispensable for characterizing,
predicting, and optimizing transport phenomena at the smallest scale. Future challenges include
improving interpretability, ensuring generalization beyond training conditions, and achieving
reliable uncertainty quantification. Nevertheless, ongoing progress in blending physical priors
with flexible learning architectures underscores the transformative role that ML plays in
nanoscale transport modeling and simulation.

3.2 ML Adoption in Physics community

The adoption of machine learning (ML) in physics has grown substantially, but the
emergence of Physics-Informed Neural Networks (PINNS) since their popularization in 2018
marks a particularly transformative trend. Publication data illustrates this explosive growth,
with the annual number of articles on PINNSs increasing from approximately 120 in 2018 to
over 2,000 by 2023. This momentum has continued, with the number of publications on track
to match or exceed previous years in 2025, based on year-to-date data. This rapid expansion
underscores a significant shift in computational physics, where PINNs evolve from a niche
methodology to a foundational tool for solving complex, data-sparse problems by embedding
physical laws directly into the learning process [40, 52]. The results are summarized in Fig. 2.
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Fig. 2. Annual publications on Physics-Informed Neural Networks (PINNs) and
variants, 2017-2025 (YTD). Counts aggregated from Dimensions.ai
Puc. 2. Piuna kinbKkicTs myOJTiKaii, NpucBsiueHUX Gi3nIHO-1HGOPMOBAaHUM HEHPOHHUM
mepexxam (PINNS) Ta ixaim Bapiantam, 3a 2017-2025 poku (Ha HOTOYHHI MOMEHT).

We quantified the annual publication counts for PINNs and related variants (2017-2025
YTD) across physics, transport phenomena, and materials/nanomaterials using the
Dimensions.ai API. Queries targeted titles, abstracts, and keywords (e.g., “physics-informed,”
PINN/XPINN/fPINN) with subject-area/domain filters when supported. Records from multiple
endpoints were duplicated using the DOI or normalized titles. Counts were then aggregated by
calendar year and subfiltered for transport-focused topics. The 2025 bar reflects data through
August only; we mark it “‘YTD’ and avoid year-over-year inferences.

Within this trend, fields such as materials science, nanomaterials, and transport
phenomena have become key areas for PINN application. While the overall volume of ML
publications in these domains is large, exceeding 1,000 articles annually since 2021, PINNSs are
carving out a critical and rapidly growing niche. As shown in the accompanying chart, PINN-
related publications on transport phenomena and materials science have increased steadily.
Furthermore, within the broader paradigm of physics-informed machine learning (PIML),
PINNs and their variants are overwhelmingly dominant, accounting for over 90% of
publications in this subfield since 2021 and projected to reach 97% by 2025 based on partial
data. The proliferation of specialized modifications such as XPINN, PIKAN, and ST-PINN
further signals the maturation of the field as researchers actively work to enhance the stability,
accuracy, and efficiency of these powerful models. [8]

3.3 Overview of Existing ML Methods in Physical Applications

Having established the computational bottlenecks of traditional methods, we now survey
a portfolio of emerging machine learning techniques. Each method offers a unique approach to
overcoming a specific classical limitation, from the high cost of re-simulation to the difficulty
of discovering governing equations from the data.

Below is an overview of notable machine learning (ML) methods that have been applied
to modeling physical systems, with particular attention to how these approaches incorporate
physics-based principles, operator learning, and hybrid strategies. The discussion highlights
key techniques—Hamiltonian/Lagrangian neural networks, operator-based methods (Fourier
and Deep Operator Networks), sparse discovery frameworks (SINDy), neural ordinary
differential equations (ODE), and partial MLphysics hybrids—followed by examples in
quantum settings and a short note on limitations. While each method exhibits unique strengths,
they collectively illustrate the emerging trend of physics-informed machine learning to tackle

23



ISSN 2076-5851. Bicuuk Yepkacskoro yHiBepcurery. Bumyck Nel. 2025

the complexity of real-world dynamics and transport phenomena. See Table 3 for landmark
applications and representative results.

Table 3
Taoauusa 3

Landmark applications in nanoscale transport: method family, problem/feature, task,
key result, and citation.
3HaKOBI1 3aCTOCYBAaHHS B HAHOPO3MIPHOMY TPAHCIIOPTIi: CIMEHCTBO METOIIB,

po6emMa/oco0IUBICTh, 3aBJIaHHS, KIIFOYOBUI pe3yIbTaT Ta LIUTYBaHHS.

Method Problem / Feature Key Result Authors
(Year)
PINN Stationary, Accurate phonon transport without | LiR. etal.
(Parametri | mode-resolved phonon labeled data; solutions over (2022)
C) BTE (1D-3D) parameterized spaces
PINN Time-dependent, Excellent agreement with Zhou J. et
(Transient) | mode-resolved phonon | analytical/transient heat conduction | al. (2023)
BTE (TDTR) benchmarks
Hamiltonia Learning conserved Enforces conservation laws; Greydanus
n NN guantities improved long-term S.etal.
(HNN) stability/generalization (2019)
Lagrangia Dynamics without Energy-preserving; more flexible Cranmer
n NN canonical coordinates than HNNSs for some systems M. et al.
(LNN) (2020)
Fourier Parametric PDEs Zero-shot super-resolution; up to Li Z. etal.
Neural (Burgers, Darcy, ~1073x faster than solvers at (2021)
Operator Navier—Stokes) inference
(FNO)
DeepONet Learning non-linear Operator-learning architecture with | Lu L. et al.
operators strong generalization to new inputs (2019)
SINDy + Discovering reduced Joint discovery of latent coordinates | Champion
Autoencod | coordinates & governing and sparse governing laws K.etal.
er equations (2019)
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A-PINN PDEs on complex Laplace—Beltrami encoding enables | Costabal F.
geometries (e.g., solutions on complex topologies S.etal.
Stanford bunny) (2023)
fPINN Fractional advection— Extends PINNs to fractional Pang G. et
diffusion operators al. (2018)
(forward/inverse)

3.3.1 Hamiltonian and Lagrangian Neural Networks

Classical Molecular Dynamics simulations, while powerful, often suffer from long-term
energy drift owing to numerical integration errors. To address this fundamental stability issue,
Hamiltonian (HNNs) and Lagrangian Neural Networks (LNNs) are designed to prioritize the
conservation laws intrinsic to classical mechanics. HNNs learn a Hamiltonian function from
data and enforce Hamilton’s equations, thereby preserving an energy-like quantity across
extended time horizons [17].

Specifically, a neural network is trained to approximate a scalar Hamiltonian function,
Hgy(q,p), where q and p are the generalized coordinates and momenta, respectively. The

dynamics are then predicted by solving Hamilton's equations using the network output:
0Hg . 0Hg
=% P="% ©)

Derivatives were efficiently computed via automatic differentiation. This structure hard-
codes the conservation of energy in the model's architecture. By taking position-momentum
pairs as inputs and computing the partial derivatives of a learned scalar output, HNNs directly
encode symplectic geometry into their structure. Consequently, they tend to maintain physically
meaningful orbits in the phase space longer than generic neural networks, which often suffer
from numerical energy drift.

LNNs adopt a complementary viewpoint, working in generalized coordinates and
learning the underlying Lagrangian [18]. Under this paradigm, Euler—Lagrange equations are
used to predict accelerations, ensuring adherence to conservation principles such as energy or
momentum. One chief advantage of LNNs over HNNs is their coordinate-agnostic formulation,
rendering them well suited to problems where canonical momenta may be difficult to define
(e.g., in relativistic or constrained systems). Both Hamiltonian and Lagrangian frameworks
demonstrate reduced long-term error accumulation compared with traditional architectures,
thus providing stable predictions even for highly non-linear or chaotic dynamical systems.

3.3.2 Fourier Neural Operators

A critical bottleneck for traditional BTE or MD solvers is the ‘one-shot’ problem: a costly
simulation must be re-run from scratch for every new set of boundary conditions or material
parameters. To overcome this barrier to rapid design and optimization, operator-learning
networks such as the Fourier Neural Operator (FNO) and DeepONet have been developed,
which seek a resolution-invariant representation of partial differential equation (PDE) solutions
[19]. This approach replaces the pointwise or convolution layers with integral kernels
represented in the frequency domain. By performing a truncated Fourier transform of the hidden
layer activations, frequency-dependent weights that act non-locally in the physical space are
learned. The core of an FNO layer is the replacement of standard convolutions with a Fourier-
domain spectral convolution. For an input function v, (x), the operation is defined as

v (@) = o (Woe() + 77 (Ry - (F) ) ) (10

25



ISSN 2076-5851. Bicuuk Yepkacskoro yHiBepcurery. Bumyck Nel. 2025

where F and F ~'are the Forward and inverse Fourier transforms, respectively, R, is the

learned linear transform in the frequency domain, W is a local linear transform, and o is an
activation function. This allows the model to learn global-resolution-independent patterns
efficiently.

The primary appeal of FNOs is their speed and flexibility. Once trained on representative
examples of parametric PDEs (e.g., different initial conditions or source parameters), the FNO
can rapidly generate high-fidelity solutions for new parameter instances without retraining.
Additionally, it exhibits mesh independence, meaning that a single model can be evaluated
seamlessly at multiple spatial resolutions, an invaluable property when tackling multiscale or
high-dimensional phenomena where standard solvers may become prohibitively expensive.

Despite their advantages, FNOs have significant practical limitations that must be
considered. First, their reliance on the Fast Fourier Transform (FFT) inherently restricts them
to uniform grids and periodic or rectangular domains, posing a major challenge for the complex
irregular geometries common in nanodevices. Proposed solutions such as Geo-FNO aim to
address this by using a learned coordinate transformation to map an irregular physical domain
to a uniform latent grid, where the FFT can be applied. Second, because Fourier transform
emphasizes global interactions, FNOs can struggle to capture important local spatial features.
Training an FNO is a data-hungry process that often requires thousands of high-fidelity
simulation examples to learn the operator, which can be a significant bottleneck in
computationally expensive nanoscale problems.

3.3.3 Deep Operator Networks

Deep Operator Networks (DeepONets) also focus on learning operators rather than
merely mapping a fixed-dimensional input to an output vector [20]. The key concept involves
splitting the network into two parts: a “branch” network that encodes the input function
(sampled at sensor points) and a “trunk” network that encodes the coordinates at which the
output function is evaluated. By constructing an inner product of the branch and trunk
embeddings, the final output captured the entire function-to-function mapping.

The architecture explicitly represents the operator G mapping an input function u(x)) to
an output function G (u)(y). The output was approximated as follows:

G ) = Xh oy be(uCxy), o, ulxm)) - e (y) (11)

where the "branch™ network produces coefficients b, from the input function u sampled

at m points, and the "trunk" network produces a basis of functions tk evaluated at the output
coordinate y.

This structure is particularly advantageous in scientific contexts where one must predict
not a single value, but rather a continuous field governed by PDEs, such as heat or mass
distributions in transport problems.

DeepONets have garnered interest because they readily incorporate known boundary
conditions or observational data while preserving their ability to extrapolate to new scenarios.
They are further extensible to inverse problems and parametric studies, where one seeks to infer
the material coefficients, force terms, or boundary conditions from sparse measurements. Their
operator-centric perspective aligns well with the mathematics of PDEs and provides a compact
representation that remains robust under domain or parameter changes.

The implementation hurdles for DeepONets also warrant further discussion. They can
struggle to extract representative features from inputs with intricate structures, such as porous
media, which are analogous to nanostructured materials. The data requirements for training can
lead to significant memory (RAM) bottlenecks, particularly when both the input and output
functions are defined over high-resolution spatial domains. Furthermore, for time-dependent
problems, vanilla DeepONets can suffer from stability degradation and error accumulation
during long-term prediction. This has necessitated architectural extensions such as Physics-
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Informed Time-Integrated (PITI)-DeepONet, which is specifically designed to improve long-
term accuracy by integrating the time dimension more robustly.

3.3.4 SINDy, Neural Implicit Flows, and Related Sparse Discovery Methods

While classical models assume that the governing equations are perfectly known, real-
world nanoscale systems may exhibit unmodeled physics or emergent behaviors that are
difficult to derive from first-principles. To tackle this challenge of model discovery, methods
such as Sparse Identification of Non-linear Dynamics (SINDy) aim to discover governing
equations or latent variables directly from the data. They merged sparse regression with a
library of candidate functions to identify minimal, interpretable expressions describing the
observed dynamics [21].

Given time-series data for state vector x(t), SINDy constructs a library of candidate non-
linear functions @ (x) = [1, x, x2, sin(x), ... ]. It then solves a sparse regression problem to find

a sparse matrix of coefficients E that best fits the dynamics.
dx

== 0O(x)E (12)

The nonzero elements of E reveal the terms that constitute the governing differential
equation.

When coupled with autoencoders or other neural components, SINDy extends to high-
dimensional signals by learning a low-dimensional embedding that allows a concise set of
governing equations. Such frameworks show promise in uncovering hidden variables or
manifold structures, improving long-term predictive stability, and preserving interpretability,
traits that are often compromised in purely black-box models.

Parallel to sparse regression initiatives are neural implicit flow models, which infer
continuous transformations of probability densities without requiring the explicit inversion of
large Jacobians. By adopting continuous formulations, these “normalizing flow” methods can
embed physical constraints and invariants, offering yet another avenue to incorporate domain
knowledge into generative modeling. Although these techniques have primarily appeared in
computational fluid dynamics, they are increasingly being tested in broader contexts such as
reactive transport in porous media or micro/nanoscale flows.

However, a critical discussion of SINDy highlights its primary weakness of extreme
sensitivity to measurement noise, which is ubiquitous in nanoscale experiments. The core of
the SINDy algorithm requires the estimation of time derivatives from data, a process that
notoriously amplifies noise and can lead to the identification of spurious or incorrect physical
terms in the discovered model. Several techniques have been developed to improve their
robustness in real-world applications. These include Ensemble-SINDy (E-SINDy), which
leverages bootstrap aggregating to build a more stable model from multiple fits on subsets of
noisy data [21], and Bayesian-SINDy, which recasts the problem in a probabilistic framework
to quantify uncertainty and improve model selection in noisy, data-scarce regimes.

3.3.5 Neural Ordinary Differential Equations

Neural ODEs [22] present an alternative method for building continuous-depth neural
networks. Instead of stacking a discrete number of layers, NODE defines the transformation of
its hidden state z as a continuous process governed by an ordinary differential equation (ODE),

which is parameterized by a neural network fy:
d
=0 = folz(6), ) (13)
The output of the "network™ is then the solution to this ODE at a specific time T, found
by integrating from the initial time t:

2(T) = z(to) + [, fo(z(t), )dt (14)
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This can be seen as a continuous analog of a Residual Network (ResNet), where a ResNet
performs a discrete update:

Zeyr = 7 + f(20) (15)

, Whereas a NODE makes this update process continuous.

This continuous formulation provides two notable benefits: any modern adaptive ODE
solver can be used for the forward pass, and the memory cost of backpropagation via the adjoint
method is constant with respect to the depth. Neural ODEs and their stochastic or partial
variants have attracted attention for tasks such as time-series forecasting, invertible
transformations (continuous normalizing flows), and integration with physics-based
constraints, where the learned function fp can represent unknown or complex parts of the
dynamics of a physical system.

3.3.6 Hybrid ML—Physics Methods and physics-informed dynamic mode decomposition

As noted in Section 2.2, coupling different classical solvers in a hybrid multiscale
framework is notoriously complex, often leading to instabilities at interfaces. PIML offers a
more seamless path to the hybridization of classical physics solvers (e.g., finite element or
spectral methods) with partial ML components to exploit the strengths of each domain. One
prominent example is physics-informed dynamic mode decomposition (piDMD), where a low-
order linear operator is sought but constrained to respect known physical principlessuch as
energy conservation or shift invarianceenforced through manifold constraints [23]. By
restricting the solution space to operators that satisfy domain knowledge, piDMD reduces
overfitting, improves interpretability, and can match or surpass standard data-driven
decompositions for fluid flows, waves, and other large-scale dynamic processes.

The core idea of Dynamic Mode Decomposition (DMD) is to approximate the system's
evolution with an optimal linear operator A that maps the state x; at one time step to the next:
Xp4+1 = Axy. A physics-informed DMD (piDMD) then imposes physical constraints directly
onto A—for instance, by requiring its eigenvalues to lie on the unit circle to enforce energy
conservation in a non-dissipative system.

More broadly, hybrid strategies might embed a neural model for complicated
subphenomena (e.g., boundary conditions or local constitutive laws) into a classical solver that
handles global constraints. This modular design leverages the stability and mathematical rigor
of well-established methods while harnessing the flexibility of ML to approximate difficult or
uncertain sub-problems. Such partial MLphysics paradigms often align well with multiscale or
multi-physics applications, a frequent scenario in nanoscale transport models. For example, in
the simulation of a modern transistor, a classical finite-element solver can handle heat diffusion
in the bulk silicon substrate, while a dedicated neural network learns the highly complex, non-
linear thermal boundary resistance at the nanoscale metal-semiconductor interface, a value that
is notoriously difficult to model from first principles.

3.3.7 Use Cases in Quantum Systems and Other Complex Domains

Quantum systems exemplify scenarios where ML-based approaches can reduce the
computational overhead of traditional solvers, particularly for eigenvalue problems such as the
time-independent Schrédinger equation [24].

Hy(x) = EY(x) (16)

Here, a Physics-Informed Neural Network is trained to approximate the wavefunction
Yo (x), with both the wavefunction and energy eigenvalue E being the outputs of the learning
process. The loss function is constructed to enforce the underlying physics without labeled data,
and typically includes the following:

e A PDE residual term:

28



Cepist «Di3uko-MaTeMaTHIHI HAyKn», 2025

A 2
Lepg = ||Hipg () — Expe ()| (17)
to ensure the Schrodinger equation is satisfied.
e Boundary condition term: For example,

2
Lgc = ||l/)9(xboundary)|| (18)
for a particle in a box where the wavefunction must be zero at the boundaries.
e A normalization constraint:
Lyorm = (fW’e (0)|?dx — 1)? (19)
to enforce the probabilistic nature of the wavefunction.
By minimizing the total loss
Leotat = Lppe + Lpc + Lnorm (20)
PINN discovers the physically valid eigenstate and its corresponding energy. This
approach has also been extended to complex PDEs in astrophysics and plasma physics [25].

3.3.8 Limitations and Future Prospects

Despite notable successes, pure ML-based PDE solvers still face significant challenges.
Issues include high computational costs during training and difficulty in capturing high-
frequency or boundary-layer phenomena. This is largely due to "spectral bias,” the inherent
tendency of neural networks optimized with gradient descent to learn smooth, low-frequency
functions far more easily than high-frequency ones, causing them to struggle with sharp
gradients or oscillatory solutions. Moreover, there is a risk of overfitting when data or physical
constraints are limited [26]. In practice, many of the most successful applications to date are
hybrid in nature, where a classical framework handles core numerical tasks, and a neural
network is used selectively to approximate complex substructures or as a surrogate for large-
scale parameter sweeps.

Ongoing work aims to improve scalability, automate architecture selection, and develop
adaptive collocation or sampling schemes that refine training where PDE residuals are large.
Incorporating more advanced physics priors, such as conservation laws, symmetries, or known
invariants, should further enhance the model stability and interpretability. As research
continues, these developments may pave the way for robust, widely used ML physics solvers
that accelerate discovery and design in fields ranging from fluid mechanics and materials
science to quantum information. A comparative overview of these key approaches is presented
in Table 5.

4. Physics-Informed Neural Networks (PINNs) and Related Approaches

Although traditional machine learning is a powerful tool for data analysis, Physics-
Informed Neural Networks (PINNSs) are the quintessential embodiment of the paradigm of
fusing data with physical laws. They construct the required bridge by embedding the governing
equations directly into the learning process.

4.1. Core Concept: Why Physics-Informed Neural Networks?

Advances in data-centric methods have transformed the landscape of simulation and
modeling; however, purely data-driven strategies often struggle when measurements are sparse
or parameter spaces are large. Physics-Informed Neural Networks (PINNS) present an
alternative by embedding governing physical laws, expressed as partial differential equations
(PDEs) or integral constraints, directly into the training process of a neural network. In classical
machine-learning approaches, one trains a model solely on input—output data, with no built-in
guarantee that the predictions will adhere to known laws of physics. By contrast, PINNs
incorporate PDE residuals, boundary conditions, and other domain knowledge into the loss
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function, penalizing solutions that deviate from fundamental conservation or constitutive laws
[25, 27, 28]. One can think of it in this way: a standard neural network is like a student who
learns only from a sparse set of correct answers (the training data). A PINN is like a student
who has the same answer sheet but also a "physics coach, " who constantly checks their work
everywhere else, penalizing any reasoning that violates fundamental laws (the PDE residual).
This analogy highlights the transformation of the workflow. A classical solver is a student who
can solve only the exact problems they are given. The PINN, guided by its ‘coach," learns the
underlying principles, allowing it to generate a continuous, physically valid solution across the
entire domain—effectively turning a sparse data problem into a well-posed physics problem.

This principle becomes especially relevant for nanoscale transport problems, which often
exhibit unique or extreme regimes (e.g., ballistic—diffusive conduction or strong thermal non-
equilibrium). At such small scales, experiments may be expensive or challenging, yielding only
partial or localized data—Ilike temperature profiles at selected points or times. Moreover,
classical continuum models (e.g., Fourier’s law in heat conduction) can fail, and direct
Boltzmann-based or kinetic models are computationally prohibitive for multi-dimensional,
time-dependent problems [13, 38]. By fusing small experimental datasets with first-principles
PDE constraints, PINNs offer a path toward physically consistent surrogate modeling that does
not require dense measurements.

Several other factors underscore the appeal of PINNs in nanoscale transport:

Sparse or Partial Data: The ability to handle incomplete or noisy measurements is
critical. PINNs can “fill in the gaps” by enforcing a PDE that governs the entire domain,
effectively interpolating between known sensor points in a manner consistent with physical
principles [42].

Complex PDEs: Submicron systems often require Boltzmann Transport Equation or
fractional PDEs to capture memory effects and ballistic transport [13, 33, 38]. Traditional
solvers in high-dimensional momentum or frequency spaces can be intractably large. PINNS,
on the other hand, allow a mesh-free approach with the direct integration of boundary terms or
scattering laws through the loss function.

Inverse/hybrid scenarios: In nanoscale research, unknown boundary conditions,
scattering coefficients, or doping profiles may be as critical as the solution itself. PINNs can
simultaneously solve these unknowns by treating them as learnable parameters under PDE
constraints and effectively performing PDE-constrained optimization with minimal data [28,
29].

Hence, the “physics-informed” paradigm helps to avoid unphysical overfitting. The
model is guided by fundamental transport equations in addition to standard data-driven loss
terms, leading to solutions that remain faithful to the continuity, momentum, energy
conservation, or scattering rules.

4.2. Architecture, Loss Function, and Training

4.2.1. General PINN Architecture

A typical PINN for solving PDE-based problems approximates the unknown solution
ug(x,t) — or a more elaborate multi-variable function if the velocity, frequency, or
polarization spaces are includedthrough a feed-forward neural network [20, 25]. The inputs to
the neural network are the coordinate or state variables (e.g., space, time, and wavevector), and
the outputs are physical fields, such as temperature, concentration, velocity potential, or mode-
resolved distribution functions. Rather than performing finite-difference or finite-element
schemes to approximate derivatives, one uses automatic differentiation on the neural network
itself to compute the partial derivatives that appear in the PDE residual [25, 27, 40].

For example, when modeling phonon transport in a microdevice, one might feed (x, t, k)
into a network that outputs the phonon distribution fg(x,t, k). The PDE residual includes the
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streaming (advection in k-space) and collision terms. Because neural networks are universal
function approximators, in principle, they can represent the underlying solution. Importantly,
the topology of the network and the choice of activation functions (e.g., hyperbolic tangent vs.
sine-based) can significantly impact the training speed and accuracy, especially when sharp
gradients or wave-like solutions are involved [35, 39].

4.2.2. Loss Function Construction

The construction of this total loss function is the foundation of the PIML paradigm.
Fusion of sparse, varied information sources—governing laws (Lppg), boundary constraints
(Lgcic), and sparse physical measurements (Lga,) — OcCcurs. The training process does not
merely fit data; it searches for a solution that simultaneously satisfies all these constraints,
making it a powerful tool for both forward prediction and inverse inference.PDE Residual: Let
NV denote the PDE operator, for instance:

Nug(x)] =0, (21)
for collocation points {xi}?’;‘f. The PDE residual loss is typically
Lok = 7= St (W [ug (<)) (22)

For the Boltzmann equation, V' includes streaming (advection in the phase space) and
collision integrals [13, 38]. In fractional PDEs, V' represents operators with noninteger
derivatives [33].

Boundary and Initial Conditions: Known boundaries or initial data can be applied via
“soft constraints” (penalty terms) or “hard constraints” (analytic embedding). In the soft-
constraint approach, the loss function has the following additional terms.

1 N 2
Lecnc =5 =X;21 (ue(xj) - ch(Xj)) . (23)
to ensure that the neural solution matches the measured or prescribed values ggc at the
boundary points {x; ;fo [25, 28]. Alternatively, a “hard constraint” technique analytically

imposes the PDE constraints by rewriting the neural network output to satisfy the boundary
conditions [28].

Experimental/observational data: In many nanoscale contexts, partial temperature or flux
measurements are available using advanced metrology techniques (e.g., thermoreflectance).
These data points can be integrated into a

1 2
Lgata = ngia{a(ue () — Ugps (X)), (24)
ensuring that the solution is faithful to real observations [28, 29, 42].
The total loss Ly, is typically a weighted sum of these terms:

Liota1 = appE Lppg + apc Lpcic + Qdata Ldatas (25)
where the weights o’s are chosen heuristically or using adaptive techniques [29, 30].

4.2.3. Training and Optimization

Once the loss function is defined, training proceeds via gradient-based optimizers (e.g.,
Adam and RMSProp) to update the network parameters 6 [27].

The core of the training process is to iteratively update the network parameters 6 to
minimize the total loss function L_total. This is achieved through gradient-based optimization,
where the basic update rule is

Ok+1 = Bk = MVoLiota (26)
where 0, represents the parameters at iteration k, n is the learning rate, and VgL, IS the
gradient of the loss with respect to the parameters computed via backpropagation.

Often, one follows with a second-stage optimizer (e.g., L-BFGS or quasi-Newton
method) to refine the convergence. Domain decomposition methods such as conservative
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PINNSs (cPINNSs) or extended PINNs (XPINNS) can further alleviate the difficulties posed by
steep gradients or high-dimensional PDE spaces [30].

The multiterm loss can be unbalanced if the PDE residual is orders of magnitude different
from the boundary/data residual, potentially causing optimization stagnation or “spectral bias.”
Techniques such as dynamic reweighting of loss terms or progressive training (“curriculum
learning”) help maintain equilibrium during optimization [29]. Despite these complexities, the
synergy between PDE constraints and data typically yields solutions that track essential physics,
even with small training sets.

4.3 Variants and Improvements of PINNs

As the PINN framework has matured, researchers have proposed numerous extensions to
handle specialized PDE forms, multiresolution domains, or more advanced operator-learning
scenarios:

4.3.1 Fractional PINNs

Fractional-order PDEs emerge in anomalous diffusion or in systems with non-local
memory effects, as observed in nanoscale mass/charge transport in porous media [33]. For
instance, fractional advection—diffusion equations can capture heavy-tailed probability
distributions of random walks. As standard automatic differentiation cannot directly compute
fractional derivatives, fractional PINNs rely on numerical quadratures or finite-difference
stencils to approximate these operators. The PDE residual is then included in the loss function,
allowing the model to learn solutions with long-range correlations or fractal scaling behaviors
[33].

Because standard automatic differentiation cannot compute fractional derivatives, the
fPINNs approximate them numerically. A common definition is the Griinwald-Letnikov
fractional derivative of the order a:

Do (x) = lim = = D*(}) f(x — k) (27)
where (%) is the generalized binomial coefficient. This formulation shows that the

derivative at point x depends on all past values of the function, capturing the memory effects
inherent in many anomalous transport phenomena.

4.3.2 Physics-Based Activation Functions

A crucial challenge in PINNs is capturing oscillatory or steep-gradient solutions with
standard activation functions (such as tanh). Incorporating domain knowledge into activation
layers, for example, using sine functions for wave-dominated PDEs or exponential forms for
decay processes, can improve the accuracy and reduce training epochs [35, 39]. Physical
Activation Functions (PAFs) can directly embed known solution motifs into a neural network,
enabling more efficient coverage of the solution space.

For example, to capture a wave-like solution, the network output ug(x,t) can be
constructed as a composite function:

ug(x,t) = Ng(x,t) - sin(wx — kt) + mean (28)

In this structure, a standard neural networkNy(x,t) learns the wave's amplitude

modulation, while the “sin™ function explicitly imposes the underlying oscillatory physics.

4.3.3 Neural Operators

Distinguishing the goal of a standard PINN from that of a neural operator is crucial. A
standard PINN was trained to solve a single instance of a PDE with fixed parameters and
boundary conditions. The network must be retrained if the boundary conditions change. By
contrast, a neural operator learns the entire solution operator for a family of PDEs.
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Rather than learning a single PDE solution, neural operators (Fourier Neural Operator,
DeepONet) aim to learn the mapping from input functions (e.g., boundary conditions or
material parameters) to solution fields [19, 20, 34]. This approach is suitable for repeated PDE
solutions, such as parametric sweeps over doping concentrations in semiconductors or
geometric changes in microdevices. Once trained, a neural operator can instantly infer the
solution for new input functions, offering near-real-time PDE simulations for design or
optimization loops.

This makes them exceptionally powerful for parametric design sweeps or uncertainty
quantification, in which the governing PDE must be solved thousands of times with varying
inputs. The tradeoff is that training a neural operator is significantly more data-hungry and
computationally intensive than training a standard PINN for a single case.

4.3.4 Hybrid or Mechanistic—Al Approaches

Sometimes, domain decomposition or subphysics models can be coupled with a PINN.
For instance, a partial solver can handle ballistic regimes of transport, whereas PINN manages
diffusive subdomains with uncertain boundary fluxes [30, 36]. Alternatively, a “relaxation
network” can approximate the complicated Boltzmann collision operator in momentum space,
preserving conservation laws while speeding up full PDE solutions [42]. These hybrid
frameworks allow large-scale or multiphysics problems, such as ballistic—diffusive phonon
flows or multiionic reactive transport, to be addressed with more tractability.

4.3.5 Extended or Conservative PINNs

XPINNs and cPINNs partition the domain into subregions with separate networks,
enforcing the continuity of the flux or solution across subdomain boundaries [30]. Such local
networks can capture steep gradients or shock layers better by focusing on smaller pieces of the
domain. In particular, cPINNs maintain global conservation properties by matching fluxes
across interfaces, which is vital for correct mass and energy budgets [30].

These methods enforce physical constraints at the interface I;; between the two
subdomains (2; and ;. For neural network solutions u; and wu;in in each subdomain, the
following conditions are enforced via the loss function:

e Continuity of the solution:

w;(x) —u;(x) =0, forx €Iy (29)
e Continuity of the flux (for a diffusion problem):
Vu;(x) -n—Vuj(x) - n=0, forx €Il (30)

where n is the vector normal to the interface. This ensures that the global solution is
physically consistent and conserves quantities, such as mass or energy, across the entire domain.
A summary comparison of these primary PINN variants is provided in Table 4.

Table 4

Taonauus 4

Comparison of Physics-Informed Neural Network Variants.
[TopiBHsIHHS BapiaHTiB (Pi3UKO-1HPOPMOBAHUX HEHPOHHUX MEPEK.

Variant Core Idea Best Use Case Key Limitation
Standard PINN  Solves a single PDE Inverse problems Must be
instance using a PDE  with sparse data; fixed retrained for each
residual in the loss. geometry.
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new problem
instance.
fPINN Incorporates Problems with Calculation of
fractional derivatives ~ anomalous diffusion fractional
into the loss function.  or non-local effects. derivatives can
be complex.
XPINN / Uses domain Problems with sharp Enforcing
cPINN decomposition with gradients, shocks, or continuity/flux
separate NNs for complex geometries. conservation at
subdomains. interfaces adds
complexity.
Neural Operator ~ Learns the solution Rapid parametric Requires a large
operator for a family  studies, optimization, dataset of solved
of PDEs. uQ. PDE instances
for training.

4.4 PINNs for Nanoscale Transport: Boltzmann Transport Equation

The primary motivation for applying PINNSs to the Boltzmann Transport Equation was to
combat the "curse of dimensionality." In its full form, the phonon BTE exists in 7-dimensional
phase space (three spatial dimensions, three momentum/wavevector dimensions, and one time
dimension). Traditional mesh-based solvers become computationally intractable in such high-
dimensional spaces, whereas the mesh-free nature of PINNs offers a viable forward path.

4.4.1 Motivation and Scope
As device sizes drop to the nanometer regime, standard diffusion-based PDEs
increasingly fail to accurately describe thermal or charge-carrier transport. The Boltzmann
Transport Equation (BTE) provides a kinetic description of these carriers (phonons and
electrons), capturing ballistic effects, mode-dependent scattering, and intricate boundary
interactions. However, BTE, with high-dimensional phase spaces (spatial, momentum,
frequency, polarization), can be computationally overwhelming for classical solvers [13].
Here, PINNs hold promise because:
e They can incorporate partial data from advanced nanoscale metrologies, for example,
time-domain thermoreflectance for local flux, while still obeying ballistic—diffusive
physics [38].
e They bypassed extensive mesh generation in the phase space by embedding PDE
constraints into the loss.
e They allow parametric or inverse analyses of unknown scattering coefficients or
boundary conditions within a single training workflow [38].

4.4.2 Illustrative Approaches

High AT Boltzmann PDE: Large temperature differences in ultrathin films or
microdevices can induce strong phonon non-equilibrium, far from standard Fourier conduction.
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A PINN approach can solve the stationary or transient BTE by penalizing collision integrals in
the PDE residual, whereas boundary flux data from experiments or classical continuum
approximations anchor the solution [13]. The network systematically adjusts the scattering
parameters if they are left as free variables, thereby matching the PDE solution to the measured
thermal flux.

Time-dependent Mode-Resolved BTE: In time-domain thermoreflectance experiments,
short-pulsed laser heating and subsequent relaxation are monitored. Capturing this dynamic
requires mode-resolved BTE in space and time [38]. Each phonon mode has unique relaxation
times, velocities, and dispersion relationships. A PINN can approximate the distribution
function fg(x, t, k), with the PDE residual enforcing streaming + collision. Sparse data from
local temperature sensors or transient reflectance signals can help calibrate unknown boundary
reflectivities or scattering rates.

Implementing physical boundary conditions: Because nanoscale transport is dominated
by boundary scattering, the correct implementation of physical boundary conditions is essential
for the accuracy of the BTE-PINN. Different physical scenarios, such as the specular versus
diffuse reflection of phonons at an interface, must be encoded into the loss function. For
specular reflection, the distribution of outgoing particles is a direct mirror of the incoming
particles, whereas for diffuse reflection, the particles are re-emitted according to an equilibrium
distribution. Enforcing these distinct mathematical forms within the PINN framework is a key
area of research and is critical for accurately modeling phenomena, such as thermal boundary
resistance.

Multi-lonic or Multi-Carrier Transport: In doping or multi-ionic contexts (e.g., Li-ion
transport and multi-species doping diffusion), partial differential equations become coupled
across species, and local scattering or reaction rates are uncertain [36]. A PINN can unify these
PDEs by sharing domain knowledge regarding flux continuity or electroneutrality. Instead of
individually calibrating each PDE with expensive iterative solvers, the network simultaneously
fits all species, enforcing PDE coupling constraints and partial data.

Structure-preserving Boltzmann gates: A primary challenge in formulating a BTE-PINN
is the collision operator, f /dt.,;;- This term is not a simple derivative, but a high-dimensional
integral operator that accounts for all possible scattering events, making its direct evaluation
within the loss function computationally prohibitive. To tackle this, recent efforts propose
training a neural network surrogate, such as a 'RelaxNet,” for the collision operator itself. [42]
This is a non-trivial task, as the surrogate must be constrained to preserve physical invariants
such as the conservation of mass, momentum, and energy. When a structure-preserving
surrogate is integrated into the PDE residual, the computational overhead is drastically reduced
by replacing the expensive integral with a learned mapping that still yields physically
meaningful solutions.

While PINNs are 'mesh-free," training a neural network in the BTE's 7-dimensional phase
space (three spatial, three momentum/wavevector, one time) remains a monumental challenge.
To overcome this 'curse of dimensionality' without resorting to costly discretizations, recent
work has introduced the Monte Carlo Physics-Informed Neural Network (MC-PINN). The core
innovation of this approach is a two-step sampling strategy in which points are first randomly
sampled in the temporal-spatial domain and then separately in the solid angular domain. The
final training points are constructed from the tensor product of these two sets, making the
framework entirely mesh-free and avoiding the need for a priori angular discretization. This
strategy has proven to be highly effective for multiscale heat conduction, successfully modeling
the transport from the ballistic to the diffusive regime within a unified framework. Furthermore,
it is remarkably memory-efficient; for a 3D ballistic transport problem, the MC-PINN requires
only 16% of the memory of a state-of-the-art deterministic BTE solver [53].
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4.4.3 Advantages and Current Challenges

Failure Mode and Mitigation. PINNs can deal with stiff collision operators, boundary
layers, and high-frequency content (spectral bias). These difficulties are often rooted in the
fundamentally complex and rugged loss landscape of physics-informed problems, which are
fraught with spurious local minima that can trap standard gradient-based optimizers.

The spectral bias is detrimental. This well-documented challenge refers to the inherent
tendency of standard neural networks optimized with gradient descent to learn smooth, low-
frequency functions far more easily than high-frequency functions [52]. This limitation is
critically relevant for nanoscale transport, a field rife with high-frequency phenomena, such as
sharp temperature gradients at interfaces, ballistic phonon effects, and shock layers. When a
PINN attempts to learn such a solution, the spectral bias can cause it to converge on an overly
smooth approximation, failing to capture the physics that defines the nanoscale regime.

Several state-of-the-art mitigation strategies have been developed to address this critical
mode of failure. These include:

e Multiscale or multi-grade network architectures that decompose the problem by
frequency allow different parts of the network to specialize in learning different
components of the solution.

e The use of adaptive activation functions can adjust the slope during training to better
approximate steep gradients.

e Fourier feature mapping transforms the input coordinates into a higher-dimensional
space where high-frequency components are represented by lower frequencies,
making it significantly easier for the network to learn.

Remedies include domain decomposition (XPINNs/cPINNS), physics-aware activations
(sine/exponential), curriculum schedules with loss reweighting, and structure-preserving
surrogates for the collision terms. Where parametric reuse is required, consider training a neural
operator against a family of BTE instances, and use a small PINN to enforce constraints locally.

By directly enforcing Boltzmann-based PDE constraints, PINNs for nanoscale
conduction or electron transport are promising.

e Mesh-Free Handling: Sideskipping the need for a fine mesh in high-dimensional

momentum or frequency space.

e Direct Data Integration: Surpassing purely numerical PDE solvers by unifying
experimental data with ballistic—diffusive PDE constraints.

e Parametric or Inverse Solutions: Simultaneously learning unknown scattering
parameters, boundary conditions, or doping profiles within the BTE framework.

However, major hurdles remain to be overcome. High dimensionality, stiff collision
terms, or steep ballistic boundary layers can hamper the training convergence. In addition,
guaranteeing global conservation (e.g., net energy and momentum) in strongly anisotropic or
non-local domains may require specialized network architectures (e.g., cCPINNs or structure-
preserving surrogates). Hyperparameter tuning and domain decomposition remain active
research areas for achieving robust accuracy at scale [38]. Nonetheless, successes in handling
subcontinuum conduction highlight that PINNs aligned with domain-specific physical
constraints can significantly advance nanoscale transport modeling [42].
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Table 5

Taoauus 5

ML-focused summary: method family, short essence, advantages, typical limitations,
and primary use cases.

ML-orsin: ciMeiiCTBO METO/TiB, KOPOTKHI BUKIIAI, TIEPEBAry, TUIIOBI OOMEXXECHHS Ta
OCHOBHI BapiaHTH BUKOPUCTAHHS.

Method Short Essence Advantages Disadvantages/ | Typical Use
(family) Limits
PINNs Solve single Data-efficient; Training Sparse/noisy
PDE instance | inverse problems; | instability; may data; fixed
via mesh-free struggle with geometry
PDE-residual + stiff/high-freq inverse
data loss regimes; retrain problems
minimization per-instance
Neural Learn solution | Orders-of-magnit | Data-hungry; Design/optimiz
Operators operator for ude faster heavy training; ation
(FNO, PDE family inference; sometimes surrogates; UQ
DeepONet) generalizes to grid/BC
new inputs constraints
Equation Sparse Interpretable, Sensitive to Discovering
Discovery regression to parsimonious noise; needs missing
(SINDy) reveal models good physics; model
governing library/derivative reduction
equations S
Symmetry- Encode Physical Limited for Conservative
preserving | conservation/sy | consistency and | dissipative/force dynamics,
NNs mmetry via long-term d systems (needs | long-horizon
(HNN/LN | Hamiltonian/La stability extensions) trajectories
N) grangian forms

4.5 Concluding Remarks

Physics-Informed Neural Networks represent a critical shift in computational modeling;
rather than relying solely on data or classical discretizations, PINNs couple both routes to
produce solutions that adhere to the underlying physical laws. Their mesh-free nature and
capacity to incorporate partial data make them particularly appealing for nanoscale transport,
where Boltzmann-based or fractional PDE descriptions are mandatory; however, direct
numerical solvers can be too costly. Furthermore, the recent surge in specialized variants, such
as fractional PINNSs, operator networks, and structure-preserving surrogates, illustrates that the
method remains highly adaptable across diverse transport regimes.
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Looking ahead, challenges such as optimizing loss weighting, handling multiple stiff PDE
operators, and ensuring long-term stability in time-dependent problems require sophisticated
training strategies. Continued innovation in domain decomposition (XPINNs and cPINNSs) and
physically aware network designs (custom activation functions and coupling classical solvers)
can mitigate these issues. Research efforts have demonstrated that PINNs can unify partial
measurements and sophisticated PDE operators in a single trainable pipeline, thereby opening
new directions in nanoscale heat transfer, multi-ionic membrane transport, and quantum-scale
electronics. As computational power increases and neural frameworks mature, PINNs promise
to become a cornerstone in bridging experimental data and first-principles modeling for
advanced nanoscale applications.

5. Data Challenges and Resources in Nanomaterial Research

Nanomaterial research is critically dependent on reliable data; however, obtaining high-
fidelity datasets at the nanoscale remains a major bottleneck. A key distinction exists between
computationally generated data derived from first-principles modeling and experimental
databases that compile the measured results. Although both are essential, they present different
challenges. High-accuracy simulations (e.g., molecular dynamics or Monte Carlo) are
computationally expensive, limiting their scope to smaller systems or shorter timescales [14].
On the experimental side, measurements can exhibit substantial noise and variability due to
sample inconsistencies or environmental fluctuations. This data landscape requires
sophisticated strategies to bridge the gap between theory and reality.

5.1 The Landscape of Open Data Initiatives

To address these challenges, the materials science community has developed several
crucial open-data initiatives. These platforms provide programmatic access to vast amounts of
data, enabling high-throughput screening and training of machine learning models. They can
be broadly categorized into foundational databases that provide simulation inputs, specialized
databases with calculated transport properties, and curated experimental datasets for validation.

5.1.1. Foundational Computational Databases

These repositories serve as bedrock for most computational transport studies, providing
the necessary inputs for BTE solvers.

Materials Project (MP) is a massive open-access database containing DFT-calculated
properties of over 140,000 inorganic compounds. This is the de facto starting point for many
studies, providing fundamental data such as crystal structures and electronic band structures,
all accessible via a powerful API. Similarly, phonon properties, which are crucial for calculating
thermal conductivity, can be found in specialized collections, such as the Figshare dataset by
Petretto et al. [57] or calculated from MP structures.

Automatic FLOW for Materials Discovery (AFLOW) is another large DFT database with
over 3.5 million entries. It serves a similar role to MP, but uses a different set of conventions
and includes some directly calculated thermal properties using the AGL model for a subset of
materials.

Specialized 2D Materials Databases, such as C2DB and 2DMatPedia, focus specifically
on two-dimensional materials. They are invaluable for researching nanoscale transport in low-
dimensional systems, providing not only structures and band structures but also key parameters
for BTE calculations, such as deformation potentials and effective masses.

5.1.2. Specialized Transport Property Databases

These databases go a step further by performing computationally intensive BTE
calculations and obtaining the resulting transport coefficients. Crucially, these high-fidelity
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BTE solvers rely on the foundational computational databases mentioned previously, such as
the Materials Project (MP) and AFLOW, as the primary sources of their required ab initio inputs
(e.g., crystal structures and phonon properties). The large-scale datasets generated by these BTE
solvers, in turn, become essential training data for data-hungry surrogate models, such as PINNs
or Neural Operators.

The Dryad dataset by Ricci et al. [54] is a landmark resource that contains the electronic
transport properties (conductivity and Seebeck coefficient) for nearly 48,000 materials from the
Materials Project. These properties were calculated using BTE under the Constant Relaxation
Time (CRT) approximation. This dataset is ideal for training ML models, but it is crucial to
recognize its underlying physical simplification, as the CRT approximation neglects the energy-
dependent scattering that is crucial in many nanoscale systems.

5.1.3. Key Experimental Datasets

Experimental databases are essential for validating computational models and grounding
them in physical reality.

The Zenodo Interfacial Thermal Resistance (ITR) dataset [55] is a curated collection of
experimentally measured ITR values from the scientific literature covering approximately 300
materials. Because interfacial scattering is a dominant mechanism in nanostructures, this
database is a critical resource for validating models of thermal transport across interfaces. This
collection serves as a critical benchmark for validating PIML models that aim to solve the
inverse problem of ITR prediction. Furthermore, such curated experimental compilations have
been successfully used to train classical ML models (e.g., Support Vector Machines, Gaussian
Process Regression) to predict ITR, providing a useful baseline against which more advanced
physics-informed approaches can be compared.

The OBELIX dataset by Hargreaves et al. [56] provides expertly curated experimental
data on the ionic conductivities of over 800 solid-state lithium-ion conductors. While focusing
on a specific application, it serves as the gold standard for validating models of ionic transport
and demonstrates the value of carefully collected experimental data for machine learning.

5.2. Strategies to Handle Data Limitations

Even with these resources, researchers must employ robust strategies to address data
limitations. Multifidelity data approaches, which creatively combine large but approximate
computational datasets with sparse but high-accuracy experimental measurements, are
particularly promising. Other key strategies include synthetic data generation to expand limited
experimental datasets [14, 16], discrepancy modeling to learn the missing physics from
experimental data [43], transfer learning to leverage knowledge from data-rich domains [45],
and ensemble methods to enhance noise resilience [44].

Physics-informed methods such as PINNs are uniquely suited to this "small data" regime.
The inclusion of governing equations in the loss function acts as a powerful regularizer,
enabling physically consistent predictions, even when direct data are unavailable. The
continued growth of open databases, combined with advanced, physics-aware ML frameworks,
paves the way for the accelerated discovery and design of nanoscale transport.

Ultimately, this integration reframes the landscape of data resources as a strategic guide
for researchers. The choice of PIML method is fundamentally linked to the available data
regime. If a researcher has access to thousands of simulations across a parameter space—a 'big
data' scenario—a Neural Operator becomes a viable and powerful tool for creating a fast
surrogate model. Conversely, if the researcher has only a single, noisy experimental trajectory
but a well-established governing PDE—a 'small data’ scenario—a PINN is the more appropriate
choice, using physics as a regularizer. Discussing this data-model symbiosis provides readers
with a practical framework for selecting an appropriate tool for their specific research context.
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6. Current Gaps and Future Research Directions

6.1. Bridging Data Scarcity and Multi-Fidelity Requirements

The chronic scarcity of high-fidelity experimental and simulation data for nanomaterials
has long been a major bottleneck for traditional modeling. However, this is precisely an
environment in which the PIML paradigm offers a transformative solution. PIML is uniquely
designed to thrive on sparse data by embedding physical laws directly into the learning process,
turning a perceived weakness into a tractable one. This opens the door for multifidelity
approaches that strategically combine large, low-cost datasets with minimal high-accuracy
information [4].

Multi-fidelity approaches promise to exploit both sparse high-accuracy datasets and
inexpensive but approximate models. Coarse-grid continuum solvers or simplified ballistic—
diffusive formalisms can map broad parameter spaces, whereas specialized BTE or Monte
Carlo (MC) solvers refine local regions in which the system exhibits sharp gradients or ballistic
transport [2, 9]. In machine learning terms, a single neural network may initially learn from
large amounts of “low-fidelity” data to establish an approximate solution manifold, and then
incorporate smaller amounts of high-fidelity data to correct local discrepancies.

Active learning is a key supporting technology, in which the model identifies which
uncharted or poorly predicted regions would provide the greatest improvement if measured or
computed at higher fidelity. For example, local sensitivities to boundary conditions or doping
concentrations may be used to prioritize new simulations using a full BTE solver. By injecting
only the most informative data points into the training, the total simulation cost can be
substantially reduced. This is particularly helpful in multi-dimensional parameter spaces where
naive random sampling becomes infeasible. Physical constraints, such as global energy
conservation or phonon population balances, also help ensure that model predictions, even in
regions with limited data, do not drift into non-physical regimes [13, 30]. Representative
examples of nanomaterials are summarized in Table 6.

As HPC resources expand, multifidelity schemes can be applied iteratively at scale, each
time refining a neural network surrogate to capture the elusive features of nanoscale transport.
In practice, dynamic reweighting or “curriculum learning” can present simpler tasks, such as
uniform geometries or moderate temperature gradients, and gradually incorporate more extreme
or localized conditions. Over time, this synergy between HPC-based active learning and physics
constraints should enable robust PIML models to operate with fewer data demands.

Table 6
Tabauus 6
Recent examples from nanoscale ML.: system, phenomenon, methodology, key
quantitative finding, and rationale.
HeH_IOI[aBHi MMPpUKJIAA MAIIMHHOTI'O HABYAHHA Y HaH0p03MipHI/IX CHUCTEMAX: CUCTEMA,
SBHILE, METO0JIOT1s], KIIOUOBUHN KUIbKICHUN BUCHOBOK Ta OOTPYHTYBaHHSI.

Nanomater Transport ML Key finding / Additional details
ial system | phenomenon methodology Quantitative and rationale
result
Nanofluid Convective Continuous PINN | Reconstructed | PINNs reconstruct full
Al203- heat transfer; (PDE solver) fields with error thermal and
reconstruction <2%); hydrodynamic fields
of thermal and outperform (pressure,
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Cu/water | hydrodynamic classical temperature, velocity)
[46] fields surrogate models in microchannel
for Nusselt nanofluid convection;
number and better prediction of
Fanning friction efficiency metrics
factor
Hybrid Heat transfer Bayesian PINN Improved BIPINNS predict
nanofluid and flow; (BIPINN) accuracy and hybrid nanofluid
Al203- uncertainty generalization performance while
Cu/water handling with under sparse effectively accounting
[46] sparse data data for uncertainty and
limited data
Graphene / Interfacial Molecular Optimal defect Hybrid MD+CNN
h-BN thermal Dynamics (MD) configuration explores millions of
interface conductance; + CNN increases ITC by | defect configurations
[47] optimal defect ~97% to optimize heat
structure transfer across the
design heterointerface
Graphene Thermal Molecular Porosity reduces Porosity
nanoribbon | conductivity as | Dynamics (MD) thermal fundamentally alters
[48] a function of conductivity by | phonon transport and
porosity ~90% thermal conductivity
in graphene
Electroche Charge/ion E(3)-equivariant | State-of-the-art PiNN fits potential
mical transport, neural potential | performance for energy surfaces
systems polarizability; | (PiNN package) polarized respecting physical
(electrodes, potential electrodes; symmetries; predicts
electrolytes) | energy surface excellent results | quantum properties
[49] modeling for liquid like dipole moments
electrolytes and charges
General Lattice thermal ShengBTE ShengBTE: ShengBTE solves the
nanostructur | conductivity, | (iterative phonon | computes lattice linearized phonon
es (e.g., Si, phonon BTE) / PINN for k and related BTE; PINNSs have
InAs, transport; phonon BTE quantities; been applied to
PINN: TD-BTE
successful
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lonsdaleite) phonon solution of
[10] scattering time-dependent
phonon BTE
Kinetic Approximation RelaxNet Solutions Solution-dependent
theory of of the (structure-preserv | equivalent to equilibrium state and
gases [42] Boltzmann ing NN) reference relaxation frequency;
collision Boltzmann trained on fast spectral
operator results data with case-specific
fine-tuning
Interfacial | Predicting ITR SVM, GPR, Good agreement Classical ML
thermal across LSBoost with regressors used to
resistance materials experimental estimate ITR, a key
(ITR) [51] data parameter for thermal
management in
nanomaterials
Silicon Reconstruction MFP Recovered MFP Reconstructs MFP
(phonon of phonon spectroscopy spectra agree distributions from
MFP mean free path technique with experimental data
spectroscop | (MFP) spectra first-principles without parameter
y) [50] calculations fitting, enabling
nanoscale heat
transport insight

6.2. Handling High-Dimensional PDEs with Reduced Complexity

When dealing with sub-100 nm transport, phonon scattering becomes highly dependent
on the frequency, polarization, and direction, leading to a multi-dimensional phase space [2, 9].
Even after simplifying the BTE, fully resolving the ballistic—diffusive transition may require
fine discretization in both real and momentum spaces. Similarly, quantum electron transport in
extremely confined geometries entails discretizing wave functions across multiple dimensions.
Such PDEs quickly become intractable to standard solvers.

In recent years, operator-based neural networks, such as Fourier Neural Operators (FNO)
or Deep Operator Networks, have been developed to tackle this scenario precisely [19, 32].
Instead of learning a function that maps one discrete input (e.g., boundary condition fields) to
a corresponding discrete output, these models learn mapping from function spaces to function
spaces. In effect, the operator viewpoint implies that once the network is trained, it can produce
solutions for different boundary conditions or parameters without having to solve the PDE from
scratch. This “resolution-agnostic” property is especially appealing for multiscale transport
problems, where a single fine-scale grid is often insufficient.

Furthermore, innovative sampling strategies, such as the two-step Monte Carlo approach
for phonon BTE, can significantly reduce the memory and computational burden of high-
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dimensional kinetic equations without sacrificing accuracy across ballistic-to-diffusive regimes
[53].

Implementation details are important. Large 3D or 4D PDE domains are not trivially
learned using a single neural operator. Domain decomposition: splitting the problem into sub-
domains, each handled by smaller operator networks, can be combined with HPC
parallelization. The decomposition approach also helps to enforce boundary conditions
consistently and ensures that each subdomain model is not overwhelmed by high-dimensional
complexity [12, 30]. For instance, a user may apply a specialized operator network near
subcontinuum interfaces, where ballistic scattering dominates, and a more generic network in
the device interior.

Realizing operator-based surrogates for BTE-like equations holds promise for rapid
parametric design and real-time solutions. Important technical challenges include ensuring
stable training on diverse geometries, capturing sharp discontinuities in the boundary layers,
and performing spectral domain manipulations (e.g., Fourier transforms) for irregular device
shapes. Extensions of the existing methods to unstructured meshes or adaptive meshes would
further broaden their applicability. Once these methods have matured, they can dramatically
accelerate the design cycles for next-generation transistors and nanophotonic devices by
replacing repeated PDE solutions with near-instant surrogates.

6.3. Coupling Ballistic-Diffusive Frameworks and Physics-Informed ML

Modern devices with feature sizes below ~100 nm frequently exhibit neither purely
diffusive nor ballistic transport. For example, in a thin silicon layer, phonons may behave
ballistically near boundaries, but scatter sufficiently in the bulk to appear diffusive.
Conventional continuum models (e.g., Fourier’s law) fail to capture the boundary scattering,
whereas purely ballistic BTE solutions are prohibitively expensive if extended to the entire
domain [2, 11]. Hybrid frameworks that solve BTE near boundaries but revert to simpler
continuum equations in the interior have emerged to address this complexity [12].

Physics-Informed neural networks (PINNs) allow PDE residuals to be enforced in the
training loss, thereby allowing the neural network to approximate the solution directly [13, 38].
In a ballistic—diffusive scenario, the network may have to satisfy the BTE in near-boundary
elements and the diffusion equation in the interior, with boundary conditions at the interface
ensuring the continuity of temperature or flux. Such domain decomposition is well-suited for
PINNs: one sub-network can handle the ballistic boundary layer, incorporating a partial phonon
distribution or specialized flux boundary conditions, while another sub-neutralizing solution
that deviates from fundamental conservation or constitutive lawspenalizing solutions that
deviate from fundamental conservation or constitutive lawswork manages the diffusive interior
region [30].

Assignificant challenge is frequency-dependent (or wavevector) scattering. Real materials
have phonon modes with different mean free paths and scattering intensities, which vary with
temperature or doping [4, 36]. In principle, PINNs can track these dependencies if the input
dimension includes frequency bins. However, training such high-dimensional distributions can
result in stiffness and instability. Specialized activation functions or local weighting in the loss
function (to emphasize steep gradients near the boundaries) may be helpful. Another approach
is to embed partial domain knowledge about scattering selection rules, thereby constraining the
learned distributions of the network to remain physically meaningful [38, 42].

Longer term, robust ballistic—diffusive PINNs or operator networks can unify multiple
transport pathways, for instance, ballistic phonons coexisting with diffusive electronswithin the
same computational framework. Practical breakthroughs would reduce the time required to
converge on solutions for complex device architectures such as gate-all-around nanowire
transistors or 2D/3D heterogeneous stacks. As manufacturing processes push dimensions
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deeper into the sub-10 nm realm, these hybrid methods could become a mainstay in thermal
design workflows.

A particularly complex and promising direction is to quantitatively model the impact of
size and geometry on transport by embedding physical boundary scattering models directly into
the PDE residual of PINN. For instance, instead of merely enforcing a diffusive or specular
boundary, a future PINN-BTE framework could incorporate terms representing surface-
roughness scattering. This allows for the direct prediction of the thermal conductivity (k) or
electron mobility (u) scales with a nanowire diameter or width of a 2D nanoribbon. Successful
training of such a model would require not only solving the BTE, but also accurately
representing the complex physics of carrier-boundary interactions within the loss function,
which is a significant challenge at the frontier of physics-informed learning.

6.4. Parameter Estimation, Interfaces, and Uncertainty Quantification

In nanoscale systems, many parameters, from doping profiles to interface resistances to
grain boundary scattering lengths, are difficult to measure directly [2, 4]. Even for simpler
geometries, the presence of doping fluctuations or unknown oxide—semiconductor boundary
conditions can drastically affect the device performance. Traditional inverse modeling often
involves repeated PDE solving, each time the guesses for the unknown parameters are adjusted
until the simulated outputs match the measured data. However, high-dimensional parameter
spaces and expensive solvers can result in impractically high computational loads.

One emerging solution is to integrate Bayesian inference with physics-informed
networks, rather than producing a single “best-fit” parameter set. These methods generate a
posterior distribution that quantifies uncertainty [30, 36]. Physically, this means that the user
gains not only a point estimate of, say, an interface thermal conductance, but also a statistical
confidence interval. This is invaluable in design scenarios where tight tolerance margins matter,
for example, ensuring that a local hotspot remains below a certain critical temperature.

Similarly, ensemble methods that build multiple neural approximations (Ensemble-
PINNs or ensemble-SINDy) can evaluate the consistency of each candidate solution with both
PDE constraints and measurement data [44]. Discrepancy modeling offers another perspective:
a known PDE-based model is corrected by a learned term that captures unmodeled physics,
such as extra scattering or boundary friction [43]. This discrepancy approach reduces the risk
of overfitting by focusing on the learning capacity of the mismatch rather than re-deriving all
known physics from scratch.

Bayesian or ensemble-based strategies can be computationally expensive, particularly for
large-scale 3D devices. However, advanced Markov Chain Monte Carlo (MCMC)
techniques—possibly combined with low-rank or operator-based surrogates—can mitigate
these costs [19, 32]. In practice, a robust pipeline might start with a lower-dimensional version
of the model, estimate parameters coarsely, and iteratively refine to higher fidelity while
maintaining strict PDE-consistent constraints in the learning process. Such pipelines would
yield more interpretable and reliable estimates than purely black box methods.

A significant future challenge lies in using PINNs to model the impact of defects and
interfaces on transport based on first principles. The goal is to predict interfacial thermal
resistance (ITR) not as a fitted parameter but as an emergent property. This would require a
multi-level approach: first, constructing atomistic models of interfaces (e.g., iIn
heterostructures) or defects; second, calculating their specific phononic or electronic properties;
and finally, using a PINN-BTE solver, where the loss function explicitly includes physical
interface scattering formalisms, such as the Acoustic Mismatch or Diffuse Mismatch models.
The model predictions were then validated against curated experimental databases of the ITR
values. This represents a true multiscale challenge, wedding quantum-level structural inputs to
meso-scale transport phenomena through a physics-informed deep learning framework.
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6.5. Real-Time Digital Twins and Control of Nanoscale Systems

The ultimate application of a fast, data-driven, and physically consistent modeling
paradigm is the creation of real-time digital twins, a goal completely out of reach for traditional,
computationally intensive solvers. The PIML workflow, particularly trained neural operators,
makes this possible. By replacing the slow PDE with near-instantaneous surrogate models, a
digital twin can ingest live sensor data from a physical device, infer the complete thermal and
electrical state in real time, and inform a control loop to optimize performance and prevent
failure. This represents the final step in the paradigm shift, moving from offline analysis to
online adaptive control.

This is especially true for ballistic—diffusive phenomena that require multiscale PDE
solutions [2, 11]. The concept of a digital twin, that is, a virtual model that mirrors the physical
device in real time, demands a predictive engine that can ingest sensor data on the fly and update
temperature or flux fields with minimal latency. A critical step toward this goal is the
development of generalizable models that can adapt to new data or conditions without complete
retraining. Meta-learning via neuroevolution provides a powerful framework. For instance, the
"Baldwinian-PINN" approach uses an evolutionary algorithm to discover a model initialization
that can be rapidly adapted to solve new PDE instances, such as those with different boundary
conditions or material parameters, with a single near-instant update step. The ability to quickly
specialize a pre-trained, physics-aware model is a key enabler for the practical deployment of
real-time digital twins in nanoscale applications.[52]

Trained neural surrogates, particularly operator-based models, can produce full-field
solutions in microseconds once properly trained [19, 41]. With integrated sensors providing
boundary conditions or partial state measurements, these surrogates could be re-tuned “online”
to correct for drift or unforeseen disturbances. In the simplest scenario, a PIML model runs in
parallel with the device, receiving measured data (e.g., local transistor temperatures or a set of
thermal sensor readings) and rapidly inferring a global heat map. This map then feeds a control
loop that adjusts the operating voltages, fan speeds, or gating patterns.

Sensor Integration: The device must be instrumented with appropriate thermal or
electrical sensors, whose data can be fed into the surrogate network in real time.

Model order reduction: An operator-based model can be too large if the domain is
complex. Domain-decomposition strategies or multifidelity subnetwork approaches help
maintain a low real-time inference overhead.

Robustness Under Uncertainty: Real sensor data can be noisy or partial. Probabilistic
frameworks, data assimilation, and regularization can maintain the stability of the model and
prevent erratic updates.

In advanced chip designs, dynamic thermal management might involve partially
“throttling” certain areas, redistributing tasks to cooler regions, or reconfiguring doping as the
operating conditions evolve. These capabilities require the synergy of HPC-grade offline
training, physics-informed constraints, and real-time streaming sensor data. Success in this area
would significantly reduce the risk of thermal overstress in nanoscale devices and open new
frontiers in adaptive or self-optimizing nanoelectronics.

6.6. Toward Unified Hybrid Methods and Interoperability

Historically, multiscale modeling workflows patch together separate tools: a quantum
solver for active regions, a semiclassical BTE solver for mid-range scattering, and a continuum
solver for heat conduction in the substrate. Each submodel may use different numerical schemes
and require bridging variables or boundary conditions at the interfaces [2, 11]. This
fragmentation can introduce inconsistencies or numerical instabilities, particularly if the sub-
model codes are proprietary or not designed for straightforward coupling.
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A unified PIML framework incorporates multiple levels of physical approximations in a
single trainable environment. For instance, one module might handle ballistic phonon boundary
scattering via partial distribution functions, another might approximate continuum conduction
in the device interior, and yet another might incorporate quantum corrections near the contact
region. Coupling occurs at shared boundaries and is enforced as part of a joint loss function that
ensures flux continuity, phase coherence, or energy conservation [30],[38]. Open-data and
open-source standards for domain decomposition would allow HPC codes to communicate
seamlessly with specialized neural modules [32, 44].

Cross-Module Consistency: Different domains (e.g., ballistic vs. diffusive) can adopt
separate coordinate systems or finite-element representations. Ensuring a stable handoff of
boundary conditions is non-trivial. Operator-based networks that handle geometric
transformations or mesh invariance may be useful.

Scalability: Large-scale HPC resources are still required to train complex multimodule
networks, especially if each submodule includes thousands of trainable parameters. Techniques,
such as asynchronous parallel updates or distributed training across HPC clusters, may mitigate
the overhead.

Community Adoption: Achieving standardization for model definitions, boundary
condition formats, and data handoffs is a social-technical challenge. Collaboration among
academic research groups, software developers, and industry stakeholders is required.

If realized, an interoperable PIML ecosystem would accelerate fundamental research on
electron—phonon coupling, interface scattering, and ballistic—diffusive transitions. It also
translates quickly into industrial design workflows, where reliability and performance are
paramount. In the best-case scenario, researchers and engineers can mix and match specialized
modules, such as a quantum tight-binding solver, phonon BTE surrogate, or continuum PDE
solver, without rewriting entire codebases, ultimately speeding up both fundamental discoveries
and practical device development.

6.7 Advanced Optimization and Generalization with Neuroevolution

Although improvements in network architecture and loss weighting are crucial, a more
fundamental challenge lies in the optimization process itself. The limitations of gradient-based
methods for navigating the complex loss landscapes of PINNs have motivated the development
toward alternative strategies [52].

Physics-Informed Neuroevolution (PINE), which employs gradient-free, population-
based evolutionary algorithms (EAs) for PINN training, has emerged as a promising future
direction. Unlike point-based gradient descent, EAs perform a global search that is less
susceptible to trapping in poor local minima [52].

This paradigm offers several advantages. First, multi-objective EAs can naturally handle
the competing terms in the PINN loss function (e.g., PDE residual vs. boundary conditions)
without requiring heuristic weight tuning, instead identifying the entire Pareto front of the
optimal trade-off solutions. Second, neuroevolution can be used for automated [52].

Neural Architecture Search (NAS) was used to discover bespoke network topologies
and custom activation functions tailored to the physics of a specific transport problem. Finally,
these methods show great promise for creating generalizable models, as discussed below [52].

7. Conclusion

Modeling nanoscale transport has long presented a stark choice: the fidelity of first-
principles solvers at the cost of prohibitive computation or the speed of continuum models at
the cost of physical accuracy. This review has charted the emergence of a new approach,
Physics-Informed Machine Learning, that resolves this dilemma not with a better tool, but with
a fundamentally transformed scientific workflow—a synergistic bridge that fuses the rigor of
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physical law with the flexibility of machine learning. By embedding fundamental governing
equations, such as the Boltzmann Transport Equation, directly into the training loss of a neural
network, PIML fundamentally changes the modeling paradigm. This approach enables the
fusion of sparse and noisy experimental data with physical laws, thereby allowing the creation
of surrogate models that are both accurate and computationally efficient. As demonstrated,
these methods are uniquely equipped to handle complex geometries, couple multiphysics
phenomena across ballistic and diffusive regimes, and solve challenging inverse problems to
uncover unknown material parameters from limited observations.

However, the ultimate potential of PIML extends far beyond the acceleration of the
existing simulations. This paradigm shift paves the way for true inverse design, a long-sought-
after goal in material science and device engineering. Instead of merely analyzing the transport
properties of a given nanostructure, we can design novel materials and devices with precisely
tailored thermal and electrical characteristics. Operator-learning networks, which learn the
entire solution mapping for a family of PDEs, are a critical enabler of this vision, allowing for
near-instantaneous parameter sweeps and design optimization that would be intractable with
traditional solvers. This capability forms the bedrock for creating real-time digital twins of
nanodevices, which could enable adaptive thermal management and on-the-fly performance
optimization in next-generation electronics.

Despite its transformative potential, the path to widespread adoption is not without
obstacles. Significant challenges remain in handling the high dimensionality and stiffness of
Kinetic equations, ensuring robust uncertainty quantification for mission-critical applications,
and developing models that can be generalized to new problems without costly retraining.
Therefore, the grand challenge for the next decade will be to move beyond bespoke solutions
and create unified, interoperable PIML frameworks capable of seamlessly integrating quantum,
atomistic, and continuum physics within a single environment. Realizing this vision will
demand unprecedented interdisciplinary collaboration among physicists, material scientists,
computational experts, and engineers. By successfully uniting first-principles physics with
scalable machine learning architectures, these integrated frameworks will be indispensable in
engineering next-generation nanotechnologies. By fully realizing this integration, PIML will
move beyond being a tool for analysis and become the primary engine for inverse design,
enabling scientists and engineers to specify the desired transport properties and generate novel
materials and device architectures that can achieve them. This is the ultimate goal of this new
paradigm.
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Mooeniosannsa aeuwy nepeHocy 6 HAHOPO3MIPDHUX CUCMEMAX € KPUMUYHO CKIAOHUM
3a80aHHAM, 6 AKOMY KIACUYHI DIGHAHHS KOHMUHYYMY 6BUAGIAIOMbCA HeepheKmusHuMuY, d
BUCOKOMOYHI 00UUCTIOBANbHI cucmeMu € Haomo dopocumu. DizuyHo-iHopmosane mMauiuHHe
nasuanns (PIML) cmano pesomwoyiiinum nioxooom 00 eupiwienHs yiei ounemu wisixom
cuHepeemuyH020 NOEOHAHHS PO3PISHEHUX eKCNEPUMEHMANbHUX OAHUX 3 OCHOBHUMU 3AKOHAMU
MPAancnopmuux mooeetl neputo2o npunyuny. Lleti oens0 naoae suuepnuy inghopmayiio npo me,
sax PIML — ocobauso gizuuno-ingpopmosani meviponni mepedrci (PINN), memoou naguanms
onepamopie ma nioxXio0 NONCOHAHHA MoOenell DpI3HOI MOYHOCMI — HPUCKOPIOE AHAI3
HAHOPO3MIPHO20 MparHcnopmy 6i0 (hoHonHo2o mpancnopmy Ha ocHosi BTE 0o 6anicmuuno-
oughysitinoeo menyioneperecents ma egexkmié GUNPOMIHIOBAHHS 6 ONUNCHbOMY noui. Mu
PO32NA0AEMO NOCMIUHI NpobaeMu 3 OAHUMU 8 QOCTIOHNCEHHAX HAHOMAmMepianie, 6KIYayu
WIYMHI  BUMIDIOBAHHS MA (QOPMYTIOBAHHS BUCOKOPOIMIPHUX OUpepeHYialbHUX pPI6HAHL 3
yacmunnumu noxionumu (PDE), i npeocmasnsaemo nepedosi cmpamezii, maxi ax dexomno3uyis
domeHie ma 2iOpUOHi MexaHicmuyHi memoou mawunnoz2o Hasuaunus (ML), wob niosuwumu
CHYUKICMb ma Macumaboeanicms yux Hoeux nioxodis. Hapewmi, mu okpeciioemo nomouni
npoeanuHu 6 yitl 2anysi, 6i0 KiNbKICHOI OYIHKU HEeBU3HAYeHOCMI 00 pPO3POOKU YUPPOBUX
OBIUHUKIG } PeallbHOMY Ydaci, Ma OKPecI0EMO MAUOYMHI HANPAMKU 00CNI0NCEHb, CNPAMOBAHI
Ha 00'€OHaHHA KBAHMOBUX CUMYIAYIU, eKCNepUMeHmAanlbHoi Memponocii ma 2nuboKo2o
HasuaHua. BoOyoosyrouu ¢izuuni oomedicenus b6e3anocepeonsbo 8 pobouull npoyec HA84aHHs, yi
@izuuno 006IPYHMOBAHI Memoou NPONOHYIOMb MPAHCHOPMAYIUHUN WISAX O ONMUMI3ayii
HAHOPO3MIPHO20 MPAHCNOpMY, Ma CHpUsmMuUMe 600CKOHANEHHIO MemOoOi8 OO0CHIOHNCEHH S
Hanomamepianis. /[o0amkoso Mu opmyemMo npakmuuHy «OOpPOJ*CHIO Kapmyy inmezpayii
PIML 3 eucoxonpooykxmusnumu ma ougpepenyitiosnumu congepamu (BTE/MC/FEM) ons
WBUOKUX NAPAMEMPUYHUX OOCAIONCEHb [ KaniopyeanHs inmepelicnoi menionpogioHocmi.
3anpononosano 6azo6i mempuxu, npomoxoau eanioayii ma 6enumapxu (TDTR, SThM,
epetimune06i cmpykmypu) oas eiomeopiosarnoco nopiseusanns PINN/onepamopnux mooeneti iz
nepuum-npunyunuum emanorom. Oxpemy yeazy npudineno cmpameeism UQ (baeciscoki

56


mailto:m.herkaliuk@gmail.com
mailto:a.v.gilchuk@gmail.com

Cepist «Di3uko-MaTeMaTHIHI HAyKn», 2025

PINN, ancaméni, 6acamogipocioni empamu), wo € Kiouem 00 HAOIUHO20 8NPOBAOINCEHHS
Yughposux OBIlHUKIE Y pealbHOMY 4acCi 8 HAHOMENIOMEXHIYI Ma HAHOEIeKMPOHIYL.
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