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PHYSICS-INFORMED MACHINE LEARNING FOR NANOSCALE TRANSPORT 

PHENOMENA: CHALLENGES, APPROACHES, AND FUTURE PERSPECTIVES 

 

Modeling nanoscale transport phenomena presents a critical challenge in which classical 

continuum equations fail, and high-fidelity solvers are computationally prohibitive. Physics-

Informed Machine Learning (PIML) has emerged as a transformative approach to resolve this 

dilemma by synergistically fusing sparse experimental data with the governing laws of first-

principle transport models. This review provides a comprehensive overview of how PIML — 

especially physics-informed neural networks (PINNs), operator-learning methods, and multi-

fidelity frameworks — accelerates nanoscale transport analyses from BTE-based phonon 

transport to ballistic–diffusive heat transfer and near-field radiative effects. We address 

persistent data bottlenecks in nanomaterial research, including noisy measurements and high-

dimensional partial differential equation (PDE) formulations, and present advanced strategies 

such as domain decomposition and hybrid mechanistic – Machine Learning (ML) methods to 

enhance the flexibility and scalability of these emerging approaches. Finally, we outline the 

current gaps in the field, from uncertainty quantification to the development of real-time digital 

twins, and chart future research directions poised to unify quantum-scale simulations, 

experimental metrology, and deep learning. By embedding physical constraints directly into 

the learning workflow, these physics-informed methods offer a transformative pathway for 

optimizing nanoscale transport, unlocking unprecedented opportunities in material design and 

device engineering. 

 

Keywords: Nanoscale transport phenomena, Nanomaterials, Machine Learning (ML), 

Physics-Informed Neural Networks (PINNs), Deep learning (DL) 

 

1. Introduction 

1.1 Motivation and Scope 

At nanometer-length scales, the mechanisms governing heat transfer, mass diffusion, and 

charge transport deviate significantly from the established macroscale paradigms. In crystalline 

semiconductors, for instance, heat is largely carried by phonon-quantized lattice vibrations, 

whose mean free paths can rival or exceed device dimensions; for instance, in silicon, the 

average phonon mean free path at room temperature can be over 40 nm, while the gate length 

of a modern transistor is already less than 10 nm. This significant mismatch means that heat 

transport is dominated by ballistic effects and boundary scattering rather than classical diffusion 
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[1]. Under such conditions, the standard Fourier law breaks down, and a host of additional 

effects comes into play: boundary scattering at interfaces, ballistic conduction through defect-

limited regions, and quantum confinement in ultrathin layers. These nuances are not limited to 

phonons; electrons, especially in downscaled transistors, can also exhibit ballistic transport over 

distances comparable to their inelastic scattering lengths [2]. Even in layered van der Waals 

crystals, breaking the symmetries at the atomic level introduces unconventional conduction 

pathways that lead to pronounced non-linear or non-reciprocal transport responses [3]. 

The development of modern nanoelectronics, thermoelectric devices, and advanced 

materials hinges on the understanding of these exotic transport regimes. Accurately predicting 

the heat flow in integrated circuits is crucial for preventing thermal bottlenecks and improving 

reliability, whereas optimizing phonon transport can enhance the performance of thermoelectric 

generators or thermal barrier coatings [1, 4]. In phase-change memory cells, ultrafast nanoscale 

heating orchestrates the switching process, necessitating precise models of the thermal 

conduction and melting dynamics. Near-field radiative transport, relevant in sub-micrometer 

gaps, opens avenues for energy harvesting beyond the blackbody limit. Such phenomena are 

deeply tied to quantum mechanics, ballistic-diffusive transitions, and interfacial phenomena, 

placing them well outside the comfort zone of classical equations. 

Traditional numerical methods have made tremendous strides in resolving these issues. 

Molecular Dynamics (MD) simulations offer atomistic insights into phonon scattering, but 

require formidable computational resources and may overestimate high-frequency mode 

populations at low temperatures [1, 2]. Monte Carlo schemes treat phonons or electrons as 

particles with probabilistic scattering rules, thereby elucidating boundary effects and phonon-

electron interactions for both diffusive and ballistic regimes [2]. Similarly, solving the 

Boltzmann Transport Equation (BTE) has illuminated how boundary scattering and interface 

conductance shape the nanoscale thermal conductivities [4]. However, as device features 

continue to shrink into the quantum regime, balancing the accuracy and computational cost 

becomes more challenging. Moreover, many properties, such as interface scattering rates or 

anisotropic lattice constants, require parameter fitting, which introduces uncertainties that 

classical solvers alone cannot easily reconcile [5]. 

Simultaneously, experimentation has evolved to probe these finer scales. Techniques, 

such as time-domain thermoreflectance (TDTR), help isolate quasiballistic phonons by 

measuring localized temperature changes under laser heating [1, 4]. Scanning thermal 

microscopy (SThM) captures spatially resolved heat flux albeit with calibration complexities. 

Fabricating specialized nanostructures, such as grating heaters, enables the systematic 

characterization of phonon mean free path distributions [4]. However, the synergy between 

experimental insight and theoretical modeling remains hampered by data sparsity and the high 

dimensionality of the parameter spaces. This juncture has sparked growing interest in machine 

learning (ML) methods that can both incorporate physics-based constraints and leverage 

whatever data are available, whether from simulations, reduced-order models, or actual 

measurements [5–8]. 

Recognizing the multifaceted challenges at hand, ranging from quantum effects to short 

mean free paths and steep interface gradients, this review explores how emerging physics-

informed ML techniques can bridge the gap between computationally intensive solvers and 

incomplete experimental data. This review argues that the rise of Physics-Informed Machine 

Learning (PIML) is more than an incremental advance; it represents a paradigm shift in the 

modeling workflow itself. The classical approach is a one-way street that defines physics, 

discretizes it, and solves for a single instance. In contrast, PIML enables a flexible, inferential 

workflow where partial physical laws, sparse data, and governing equations are fused to not 

only predict system behavior, but also to discover unknown parameters and unmodeled physics. 

These methods create a synergistic bridge between the rigor of first-principles models and 
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flexibility of data-driven approaches, paving the way for solving previously intractable 

problems in nanoscale transport. These approaches aim to preserve the interpretability of the 

governing equations while enhancing flexibility in parameter inference and uncertainty 

quantification. Our discussion spans nanoscale heat conduction, electron–phonon interactions, 

and near-field radiative exchange, outlining why conventional continuum-based models often 

fall short, and how ML-driven frameworks may offer more adaptive solutions. 

To that end, the following sections delve deeper into fundamental transport models at the 

nanoscale and highlight recent breakthroughs. Ultimately, these complexities do more than call 

for a better solver, and they demand a new scientific workflow. This review demonstrates how 

Physics-Informed Machine Learning provides this new paradigm, guiding the design, 

interpretation, and optimization of next-generation nanoscale systems by transforming how we 

fuse theory with data. We will first establish the fundamental limitations of classical methods 

that created this need, and then explore how specific PIML approaches directly overcome these 

bottlenecks, paving the way for solving previously intractable problems in nanoscale science. 

 

1.2 Overview of Nanoscale Transport Phenomena 

Nanoscale transport phenomena encompass a rich array of physical processes that deviate 

significantly from traditional continuum-based descriptions of heat and mass transfer. At 

dimensions of the order of tens of nanometers or below, familiar concepts such as Fourier’s law 

of heat conduction can become insufficient, as carriers (phonons, electrons, and even photons) 

experience scattering events and boundary effects in ways not typically observed at larger 

scales. The transition from diffusive to ballistic transport occurs because the dominant carrier 

mean free paths are comparable to or even exceed the material dimensions. As a result, carrier 

scattering can be strongly suppressed, yielding subcontinuum regimes in which classical laws 

break down. This section provides an overview of key nanoscale transport phenomena, 

highlighting ballistic versus diffusive behaviors, the role of phonon scattering and quantum size 

effects, and several industrial and research applications that motivate a deeper understanding 

of such processes. 

A core distinction in nanoscale conduction is whether the heat carriers move diffusively 

or ballistically. Under diffusive conditions, energy transport follows a near-equilibrium picture, 

which is often described by Fourier or Fick equations with bulk material properties. 

Specifically, Fourier's law relates the heat flux vector, mathbfq, to the temperature gradient ∇𝑇 

via the thermal conductivity 𝑘: 

 𝑞 = −𝑘∇𝑇 (1) 

Similarly, Fick's first law describes the mass diffusion, linking the diffusion flux 𝑱 to the 

concentration gradient ∇φ through the diffusion coefficient 𝐷: 

 𝐽 = −𝐷∇φ (2) 

These linear, local relationships form the basis of classical continuum models, but fail to 

capture the non-local and non-equilibrium phenomena prevalent at the nanoscale. 

 In contrast, ballistic carriers traverse the medium with minimal scattering, rendering 

classical diffusion equations inaccurate, unless carefully modified. As described by Cahill et al. 

[1], ballistic effects become increasingly prominent when device features approach the mean 

free path of dominant phonons, which, for many crystalline semiconductors, can range from a 

few nanometers to several micrometers. Moreover, even within ostensibly diffusive materials, 

boundary scattering at surfaces or interfaces can create so-called “quasiballistic” regimes. 

Incorporating boundary reflections and partial phonon transmission is essential for predicting 

temperature fields and thermal resistance at the nanoscale. 

Phonon scattering events, which include boundary, defect, and phonon-phonon 

scattering, critically affect the thermal conductivity of the nanostructures. Carbon nanotubes 

(CNTs), for instance, exhibit exceptionally high intrinsic thermal conductivities, yet real-world 



ISSN 2076-5851. Вісник Черкаського університету. Випуск №1. 2025 

 

14 

devices often exhibit lower effective values because boundary conditions and substrate 

interactions shorten the phonon mean free paths [2]. In single-wall carbon nanotubes 

(SWCNTs), ballistic phonon transport can dominate for tube lengths of tens or hundreds of 

nanometers. However, as Lukes and Zhong note, simulation length and boundary condition 

choices strongly affect the perceived thermal conductivity, underscoring that “size matters” in 

a literal sense for these one-dimensional systems [9]. Similarly, in two-dimensional materials, 

wave-like phonon interference can either enhance or suppress heat conduction, depending on 

the arrangement of interfaces, defects, and atomic layers. 

Beyond phonons, quantum size effects in electron transport also come to the fore in 

nanoscale systems, such as ultrathin films, nanowires, or quantum wells. When the electron de 

Broglie wavelengths become comparable to the device thickness, energy sub-bands form, and 

the scattering rates can differ markedly from those of the bulk. This condition is routinely met 

in contemporary devices. For example, the confinement layer in a silicon MOSFET can be as 

thin as 5 nm, which is significantly smaller than the electron's thermal de Broglie wavelength 

of approximately 17 nm at room temperature. 

Such phenomena underpin the functionality of quantum devices including single-electron 

transistors and nanosensors. Non-linear or rectification effects can arise from broken 

symmetries in low-dimensional materials. Ideue and Iwasa elaborated on how inversion 

symmetry breaking in van der Waals heterostructures drives non-linear electric transport, 

resulting in phenomena such as non-reciprocal conduction or second-harmonic generation [3]. 

While these effects primarily involve charge carriers, the underlying principle—namely, that 

reduced dimensions expose quantum degrees of freedom— also applies just as well to phonon-

based or photonic devices. 

From an industrial and research standpoint, understanding nanoscale transport is 

indispensable for various applications. One prominent example is the transistor heat 

management in modern integrated circuits. As transistors scale down, localized hot spots can 

form at gate lengths of only a few nanometers, which limits the device performance and 

reliability. Here, ballistic and subcontinuum effects may exacerbate the thermal resistance in 

gate regions, prompting the need for advanced thermal metrology and modeling that go beyond 

traditional diffusive assumptions [1]. Thermoelectric materials, which convert heat into 

electrical energy, also rely on manipulating heat carriers at the subcontinuum level. Lowering 

the thermal conductivity while retaining good electrical conductivity often involves engineering 

nanostructures that scatter phonons more strongly than electrons. The success of this "phonon 

engineering" strategy is quantified by the dimensionless figure of merit, ZT, where 

nanostructuring has led to dramatic improvements, while bulk silicon has a negligible ZT of 

approximately 0.01, and silicon nanowires have demonstrated values approaching 1.0, an 

increase of nearly two orders of magnitude. Simultaneously, sensors and quantum devices 

leverage ballistic transport to achieve higher sensitivity or lower noise, capitalizing on a reduced 

scattering environment. 

Practical examples of subcontinuum transport extend to measurements of phonon mean 

free path (MFP) distributions, which are crucial for accurately modeling heat conduction in 

nanostructured systems. Zeng et al. employed quasiballistic phonon transport in patterned 

grating structures to invert the measured thermal signals and reconstruct the MFP distributions 

of materials such as crystalline silicon [4]. By confining heat pulses to narrow metallic lines 

and tracking the resulting transient temperature signatures, one can observe how long MFP 

phonons escape the heated zone without scattering, thus reducing the apparent thermal 

conductivity. Repeating these measurements with varying line widths or geometries yields 

multiple “effective” thermal conductivity values, from which a Boltzmann Transport Equation-

based model infers the underlying phonon spectrum. Such approaches are already being 

extended to complex systems, such as alloys, superlattices, and strongly disordered materials, 
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where direct theoretical predictions (e.g., from first-principles density functional theory) 

become computationally daunting. 

Quantum-size effects are vital in emerging electronics and optoelectronics. Low-

dimensional van der Waals systems—graphene, transition-metal dichalcogenides, and 

associated nanotubes—support a host of phase transitions, spin–orbit couplings, and 

topologically driven properties, each manifesting differently when conduction is confined to 

one or two dimensions [3]. These quantum features can be harnessed to create high-

performance sensors, rectifiers, and spintronic elements that operate at energies far lower than 

those of conventional semiconductor junctions. Thus, understanding subcontinuum conduction 

bridges fundamental research into quantum phenomena with the practical engineering of next-

generation devices. 

Overall, at the nanoscale, the conduction phenomena reflect a tapestry of ballistic wave-

like behavior, subcontinuum scattering, and quantum mechanical constraints. Investigations in 

this realm benefit from advanced experimental approaches such as time-domain 

thermoreflectance (TDTR) and scanning probe thermometry, together with robust theoretical 

frameworks grounded in the Boltzmann Transport Equation or atomistic simulations [1, 4, 9]. 

Designing materials and devices to exploit or mitigate these effects requires multidisciplinary 

expertise spanning material science, applied physics, and device engineering. Deeper insights 

into boundary scattering, phonon coherence, and non-linear electronic responses will likely 

shed light on how to tailor thermal and electrical conduction in ways that are deemed 

impractical. This new understanding in turn fuels the development of high-performance 

transistors, energy-efficient thermoelectrics, nanoscale sensors, and quantum-based 

components—each demonstrating that “less” can indeed mean “more” when it comes to 

leveraging unique size-driven transport phenomena. 

By illuminating the interplay between ballistic and diffusive regimes, phonon scattering 

mechanisms, and quantum size effects, researchers are increasingly able to engineer conduction 

pathways. This sets the stage for the following sections, which delve more deeply into the 

models, measurement techniques, and design strategies that enable manipulation and 

application of nanoscale transport in real-world devices. 

 

2. Background and Classical Approaches 

2.1 Mathematical Models for Nanoscale Transport 

At nanoscale dimensions, the foundational equations of heat transfer require 

modifications that account for non-classical effects, such as ballistic phonon transport, quantum 

confinement, and strong boundary scattering. Researchers have developed a suite of 

mathematical models and computational schemes to address nanoscale transport, including the 

heat equation with quantum corrections, Boltzmann Transport Equation (BTE), and various 

diffusion equation variants tailored to small-scale phenomena. The critical length scale 

governing the transition from classical to nanoscale transport is the phonon mean free path 

(MFP). As shown in Table 1, the MFPs for common materials can range from tens to hundreds 

of nanometers, which is a scale comparable to that of modern nanodevices.  

Classical heat transfer formulations, rooted in the standard heat equation, treat energy 

carriers as diffusing particles in a local thermodynamic equilibrium. While this assumption 

suffices for macroscopic systems, it can break down when the characteristic length scales 

approach or fall below the mean free path of the phonons or electrons. Consequently, 

researchers have developed a suite of mathematical models and computational schemes to 

address nanoscale transport, including the heat equation with quantum corrections, Boltzmann 

Transport Equation (BTE), and various diffusion equation variants tailored to small-scale 

phenomena. 
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Table 1 

Таблиця 1 

Characteristic mean free paths (MFP) of phonons for some materials at room temperature 

(300 K). 

Характерний середній вільний пробіг (MFP) фононів для деяких матеріалів за кімнатної 

температури (300 K). 

Material Average MFP (nm) Notes 

Silicon (Si) ~40 - 300 Depends on purity and structure 

Diamond (C) ~300 High thermal conductivity 

Gallium Arsenide (GaAs) ~20 Stronger phonon scattering 

Graphene > 750 Very high thermal conductivity 

 

2.1.1 Heat Equation with Quantum Corrections 

The classical heat diffusion equation provides the foundation for macroscopic thermal 

analysis: 

 ρ𝑐𝑝
∂𝑇

∂𝑡
= ∇ ⋅ (𝑘bulk∇𝑇) + 𝑞 (3) 

where 𝜌 is the density, 𝑐𝑝 is the specific heat capacity, T is the temperature, 𝑘𝑏𝑢𝑙𝑘 is the 

bulk thermal conductivity, and 𝑞 is the volumetric heat-source term. This equation assumes that 

the heat carriers (e.g., phonons) travel diffusively. 

However, this assumption breaks down when the characteristic dimension of the system 

L becomes comparable to or smaller than the phonon mean free path Λ. In this subcontinuum 

regime, boundary scattering suppresses the contribution of long-MFP phonons, reducing the 

overall thermal conductivity. To account for this, the bulk conductivity 𝑘𝑏𝑢𝑙𝑘 is often replaced 

by the size-dependent effective thermal conductivity 𝑘𝑒𝑓𝑓. A common way to express this 

dependency is through the Knudsen number 𝐾𝑛 = 𝛬/𝐿. 

 For example, for a thin film, a simplified model derived from the Boltzmann Transport 

Equation yields: 

 𝑘eff(𝐾𝑛) ≈ 𝑘bulk (1 +
4

3
𝐾𝑛)

−1

 (4) 

Such modifications, while phenomenological, allow the heat equation to approximate 

subcontinuum effects without resorting to more computationally expensive kinetic solvers. The 

practical impact of this size effect is illustrated in Fig. 1, which shows a dramatic reduction in 

the thermal conductivity of silicon nanowires as their diameter decreases.  
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Fig. 1. Effective thermal conductivity 𝑘eff of silicon nanowires at 300 K as a function of 

nanowire diameter. Solid line with circle markers shows nanowire values for diameters 22, 

37, 56 and 115 nm (approximately 12, 20, 30 and 60 
𝑊

𝑚·𝐾
, respectively). The dashed horizontal 

line indicates bulk silicon, 𝑘bulk ≈ 146
𝑊

𝑚·𝐾
 . The right-hand axis reports the same data as a 

percentage of the bulk value, computed as 100 ∙ 𝑘eff 𝑘bulk⁄  (the four points correspond to 

∼8%, ∼13%, ∼20% and ∼40%). 

Рис. 1. Ефективна теплопровідність 𝑘eff кремнієвих нанодротів при 300 K як 

функція діаметра нанодроту. Суцільна лінія з круглими маркерами показує значення 

нанодротів для діаметрів 22, 37, 56 та 115 нм (приблизно 12, 20, 30 та 60 
𝑊

𝑚·𝐾
відповідно). Штрихова горизонтальна лінія вказує на об'ємний кремній, 𝑘bulk ≈

146
𝑊

𝑚·𝐾
. Права вісь показує ті ж дані у відсотках від об'ємного значення, обчисленого 

як 100 ∙ 𝑘eff 𝑘bulk⁄  (чотири точки відповідають ~8%, ~13%, ~20% та ~40%). 

 

2.1.2 Boltzmann Transport Equation (BTE) 

Arguably, the most comprehensive framework for analyzing nanoscale heat conduction 

is BTE, which tracks the distribution function of energy carriers (e.g., phonons and electrons) 

in the phase space. In particular, phonon BTE provides a way to incorporate scattering 

mechanisms–phonon — phonon interactions, boundary scattering, and impurity scattering—to 

model heat transfer in crystals and nanostructures. The general form of the phonon BTE can be 

written as  

 
∂𝑓

∂𝑡
+ 𝑣𝑔 ⋅ ∇𝑟𝑓 = (

∂𝑓

∂𝑡
)

coll
 (5) 

Here, 𝑓(𝒓, 𝒌, 𝑡) is the non-equilibrium phonon distribution function, which depends on 

position 𝒓, wavevector 𝒌, and time t. vg is the phonon group velocity, and the term on the right, 

(
𝜕𝑓

𝜕𝑡
)

coll
, represents the rate of change in 𝑓 owing to scattering events (the collision operator). 

Although BTE is conceptually straightforward, the collision term is a complex integral 

that accounts for all possible scattering mechanisms. To make the BTE tractable, researchers 

typically adopt simplifications such as Relaxation Time Approximation (RTA). Within the 

RTA, the collision operator is simplified to 

 (
∂𝑓

∂𝑡
)

coll
≈ −

𝑓−𝑓0

τ
 (6) 

where 𝑓0 is the equilibrium (Bose-Einstein) distribution and 𝜏 is the relaxation time, 

which represents the characteristic time for the distribution to return to equilibrium via 

scattering. Researchers typically adopt simplifications such as the relaxation time 

approximation (RTA) to make BTE tractable. In RTA, each phonon mode relaxes toward 
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equilibrium on a characteristic timescale. This simplification can yield relatively accurate 

results for many bulk materials, although it can underestimate the effects of normal 

(momentum-conserving) scattering processes and ballistic transport on small scales. Moreover, 

at nanoscale boundaries, phonon reflection, transmission, and partial specular scattering 

complicate the formulation of the boundary conditions. These effects may induce pronounced 

temperature jumps, flux slip, or interfacial resistances that deviate substantially from 

macroscopic intuition. 

Progress in first-principles calculations has enabled parameter-free BTE solvers, such as 

those described in [10], which combine density functional theory with iterative solution 

schemes to capture three-phonon and isotope scattering across entire Brillouin zones. Such ab 

initio approaches, which are computationally expensive, have demonstrated predictive power 

for the lattice thermal conductivity in both bulk crystals and nanowires. On the more 

engineering-oriented side, approximate BTE solutions, hybrid Monte Carlo-diffusion 

techniques [12], and data-driven methods [13] provide flexible routes for modeling intricate 

nanoscale geometries without incurring the full expense of a purely ab initio framework. 

 

2.1.3 Diffusion Equation Variants 

Even with the availability of robust BTE solvers, diffusion-like equations remain 

pervasive in practical device simulations. In many situations, Fourier’s law or slightly modified 

versions that allow for partial ballistic effects are employed. For example, in “two-step” or 

“multiscale” modeling strategies, a high-fidelity kinetic or Monte Carlo solver is applied near 

boundaries or in hot-spot regions where ballistic phenomena dominate, whereas a simpler 

diffusion model suffices in the bulk. As demonstrated in [11], such approaches are crucial for 

thin-film devices where the film thickness rivals the phonon mean free path. In these regimes, 

the classical equation often fails to predict the heat flux accurately, necessitating corrections for 

the boundary scattering and ballistic transport. 

A further refinement is the inclusion of hyperbolic terms in the heat equation, which is 

sometimes introduced to account for finite thermal propagation speeds. While these hyperbolic 

“wave-like” models capture certain transient effects, they have limited approximations. 

Rigorous solutions require capturing the full phonon distribution, as indicated by the radiative 

transfer-based approaches discussed in [11]. However, for rapidly prototyped microscale 

designs, diffusion equation variants offer a balance between computational simplicity and 

partial accuracy, thereby guiding more advanced simulations or experiments. 

 

2.1.4 Concluding Remarks 

In summary, modeling nanoscale heat transport requires a spectrum of mathematical 

approaches, ranging from modest corrections to classical diffusion equations to full-phonon 

Boltzmann transport simulations. The appropriate choice depends on the geometry, temperature 

range, scattering mechanisms, and the desired accuracy. While the heat equation with quantum 

corrections can offer expedient solutions in near-diffusive conditions, the BTE is a more 

fundamental framework for capturing ballistic effects. Hybrid or multiscale strategies that 

integrate Monte Carlo or BTE solvers near boundaries with bulk diffusion are increasingly 

attractive for realistic device-level studies. Looking ahead, the expansion of first-principles 

BTE solutions [10], development of novel Monte Carlo-diffusion hybrids [12], and emergence 

of physics-informed neural networks [13] all point to a future where nanoscale heat conduction 

can be modeled with both speed and fidelity. Such advances are essential for guiding the 

thermal management and design of next-generation electronic and photonic devices.  

The confluence of these challenges, from computational complexity to reliance on 

unknown parameters, creates an urgent need for a new modeling paradigm that can bridge the 
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gap between accuracy and computational cost. This is precisely the niche that physics-informed 

machine learning methods are poised to fill. 

 

2.2 The Computational Bottlenecks Necessitating a New Paradigm 

Traditional numerical methods, such as molecular dynamics (MD), Monte Carlo (MC), 

ballistic transport models, and hybrid continuum-atomistic approaches, have provided 

invaluable insights into nanoscale phenomena. However, each approach has inherent 

limitations when it comes to modeling the full complexity of nanoscale partial differential 

equations (PDEs) and multiphysics problems. MD methods, for instance, capture atomistic 

details with high fidelity but are constrained by immense computational costs and short time 

scales, typically on the order of nanoseconds or microseconds [14]. This method is based on 

numerically integrating Newton's second law of motion for a system of 𝑁 atoms: 

 𝑚𝑖
𝑑2𝒓𝒊

𝑑𝑡2 = 𝑭𝒊 = −∇𝒓𝒊
𝑉(𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵) (7) 

where 𝑚𝑖, 𝒓𝒊, and 𝑭𝒊 are the mass, position, and force acting on atom i, respectively. The 

force was calculated as the negative gradient of the interatomic potential energy function 𝑉, 

which is the most critical input to the simulation. 

As simulations grow in size and complexity, whether investigating protein folding or 

thermal transport in semiconductor devices, the time-step requirements and sheer number of 

atoms become prohibitive. In addition, classical MD relies on force fields and potential 

functions that may not account for all relevant quantum effects. Although quantum corrections 

can improve accuracy, they add layers of computational overhead that are not always feasible 

to implement. 

Monte Carlo (MC) methods approach the transport problem differently, particularly for 

scattering-dominated regimes, where phonons, electrons, or other carriers undergo numerous 

random collisions. By tracking particle trajectories through probabilistic scattering events, MC 

can capture a wide range of transport processes [1]. The simulation loop for a single particle 

(e.g., a phonon) follows a "free-flight and scatter" algorithm governed by the scattering rate 

𝛤 = 1/𝜏. The probability of a particle traveling for time t without scattering is given by an 

exponential distribution: 

 𝑃(𝑡) = 𝑒−Γ𝑡 (8) 

In each step, a free-flight time is sampled from this distribution, the particle's position is 

updated, and then a scattering event is simulated by randomly selecting a new state (e.g., new 

wavevector) based on predefined probabilities for different scattering mechanisms. 

However, randomness at the core of the method can lead to significant variance in 

simulation outcomes, necessitating large sample sizes and longer runtimes to achieve 

statistically reliable results. This stochastic character becomes especially problematic when 

exploring delicate features, such as electron–phonon non-equilibrium in transistors or heat 

generation in carbon nanotubes. Although variance reduction techniques exist, they do not fully 

eliminate the trade-off between simulation accuracy and runtime. 

Ballistic transport models are at another extreme, where scattering is largely neglected or 

drastically simplified [2]. These models have very small structures, such as nanowires or 

channels shorter than the mean free path, where carriers can traverse the domain without 

frequent collisions. However, once real devices extend beyond purely ballistic regimes or 

include multiple interfaces, the assumptions underlying purely ballistic equations fail to capture 

important scattering, boundary resistance, or interfacial phonon transmission phenomena. 

Consequently, ballistic treatments often yield overly optimistic estimates of the conductivity or 

underestimate the severity of localized heating in semiconductors. 

Hybrid continuum-atomistic approaches aim to bridge scales by coupling classical PDE-

based solvers (e.g., heat diffusion or fluid flow at the continuum level) with atomistic 
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descriptions (e.g., MD or ab initio methods) at crucial hotspots [9]. In principle, these 

techniques capture both large-scale device behaviour and local microscopic effects, offering a 

comprehensive view of phenomena such as localized heat generation in transistors and phonon 

scattering in nanocarbon materials. Nevertheless, building and maintaining such multi-

resolution frameworks can be exceedingly complicated. Researchers must ensure seamless 

coupling between the continuum domain and atomistic region, exchanging boundary 

conditions, fluxes, and state variables without introducing spurious reflections or numerical 

instabilities. The computational overhead also increases because of the parallel management of 

the two distinct solvers, each requiring specialized algorithms and tight integration. 

In many of the most demanding nanoscale applications, from biomolecular simulations 

to cutting-edge transistor design, these limitations can make standard methods insufficient for 

the accurate and efficient prediction of real-world behaviour. For example, short timescales in 

MD constrain researchers who want to model rare events such as protein conformational 

changes or device aging. In MC simulations, the cost of achieving statistically convergent 

results can balloon in large or complex geometries, particularly if near-field radiative effects or 

boundary scattering significantly influence heat transfer. Ballistic modeling oversimplifies 

these processes, ignoring essential scattering mechanisms and leading to incomplete energy 

dissipation. Finally, hybrid methods, which are conceptually powerful, often demand a level of 

expertise and computational resources that pose a barrier to their widespread adoption. 

Taken together, these challenges underscore the need for novel frameworks that combine 

physical rigor with computational efficiency, potentially leveraging physics-informed machine 

learning or advanced reduced-order modeling. The ultimate goal is to capture the multiphysics 

nature of nanoscale systems without sacrificing accuracy or incurring prohibitive computational 

costs. As device miniaturization continues, and as multifunctional materials with intricate 

internal structures gain prominence, the drive toward more holistic and efficient numerical 

methods will only intensify. Despite their well-earned place in the researcher’s toolkit, today’s 

traditional methods alone often cannot meet the demands of modern nanoscale science and 

engineering, necessitating a fundamentally new strategy that can invert the traditional modeling 

process: one that can learn from sparse data while respecting physical laws, handle immense 

parameter spaces, and operate at the speed required for design and control. This is precisely the 

niche that physics-informed machine learning is poised to fill in. 

See Table 2 for a comparitive overview of classical and emerging methods.  

 

Table 2 

Таблиця 2 

Comparative overview:  of major modeling approaches for nanoscale transport—

essence, advantages, drawbacks (accuracy/speed/resources), and key limitations. 

Порівняльний огляд основних підходів до моделювання наномасштабного 

транспорту — суть, переваги, недоліки (точність/швидкість/ресурси) та ключові 

обмеження. 

Approach Essence Advantages 

(accuracy/speed) 

Drawbacks / 

Resource Needs 

Key 

Limitations 

Molecular 

Dynamics (MD) 

Atomistic 

simulation 

(no 

Highest physics 

fidelity at atomic 

scale 

Extremely high 

cost; limited 

simulated 

timescales 

Requires 

interatomic 

potentials; 
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continuum 

assumptions) 

quantum effects 

costly to include 

Monte Carlo 

(MC) 

Particle‑base

d transport 

incl. 

scattering 

Captures 

ballistic↔diffusiv

e regimes; flexible 

geometries 

Moderate‑to‑hig

h cost; 

variance/noise 

issues 

Large samples 

for 

convergence; 

re‑run for each 

scenario 

Deterministic 

BTE 

Phase‑space 

PDE for 

carriers 

Predictive with 

ab‑initio 

scattering rates 

Very high 

memory/CPU 

requirements 

Complex 

boundaries; 

stability; 

detailed inputs 

required 

Continuum 

(Fourier heat 

eq.) 

Diffusive 

limit of 

transport 

Very fast; highly 

scalable 

Breaks down at 

sub‑MFP scales 

No 

ballistic/interfac

e jumps; only 

near diffusive 

limit 

Hybrid 

multiscale 

(MC/BTE + 

diffusion) 

High fidelity 

where 

needed with 

reduced cost 

elsewhere 

Lower cost than 

full high‑fidelity 

everywhere 

Coupling 

complexity and 

tooling overhead 

Matching 

flux/temperature 

across interfaces 

is non‑trivial 

Physics‑Informe

d NNs (PINNs) 

NN + PDE 

residuals + 

(optional) 

data 

Mesh‑free; good 

for inverse 

problems; 

data‑efficient 

Training 

instability; 

retrain per 

instance 

Stiff/high‑freq 

solutions; 

hyperparameter 

sensitivity 

 

3. Machine Learning Approaches for Nanoscale Transport Phenomena 

3.1 Why Machine Learning in Nanoscale Transport? 

Machine Learning (ML) methods have become pivotal in studying nanoscale transport 

phenomena, ranging from phonon and electron transport to energy conversion processes at the 

molecular or atomic level, owing to their ability to leverage partial experimental or simulation 

data for complex, high-dimensional problems. Traditional numerical techniques, such as direct 

simulation of the Boltzmann Transport Equation (BTE), require enormous computational 

resources when handling complicated geometries, boundary conditions, or numerous physical 

interactions across multiple length and time scales. Solving a non-linear BTE for a realistic 2D 

geometry can take several hours or even days on a high-performance computing cluster, 
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whereas a trained neural network surrogate can generate a solution of comparable accuracy in 

a matter of seconds on a single GPU. ML-based surrogate models alleviate some of these 

burdens by efficiently approximating the behavior of the system after training on data sampled 

from high-fidelity simulations or carefully designed experiments. In the “small data” regime 

often faced at the nanoscale, physics constraints and domain knowledge can further guide 

machine learning models to remain physically consistent even when direct measurements are 

sparse [5]. 

Another key advantage of ML for nanoscale transport is its real-time predictive 

capability. Many micro- or nanotechnological applications, such as nanoelectronic thermal 

management or drug delivery systems via nanofluidic channels, require rapid evaluation of 

transport properties under dynamically changing conditions. By embedding ML surrogates into 

multiscale modeling workflows, researchers can continuously update the boundary conditions 

and handle local variability without solving the underlying physics from scratch. This not only 

saves computational time but also enables data-driven decision-making in processes, such as 

adaptive design or online process control [15]. For instance, if a neural network is trained to 

predict the heat flux in a thermoelectric device under different contact resistances, then new 

configurations can be explored instantly rather than running full-scale simulations each time. 

The development of multifidelity and physics-informed machine learning approaches 

further enhances the utility of ML for nanoscale transport. Multi-fidelity techniques combine 

low-accuracy but cost-effective simulations with high-accuracy and smaller-scale data to strike 

an optimal balance between computational efficiency and model reliability. Physics-informed 

strategies (e.g., physics-informed neural networks or PINNs) go a step further by incorporating 

governing partial differential equations directly into the learning process, ensuring that the 

output respects conservation laws and other physical constraints [5, 16]. Although such 

methods have been more extensively applied to continuum mechanics and fluid flow, their 

principles can be easily extended to modeling energy, mass, and charge transport at sub-

continuum scales. 

Ultimately, machine learning holds promise for accelerating nanoscale transport research 

by uniting partial observations, either from local measurements or partial micro- to macro-scale 

simulation outputs, with robust surrogate models that reduce computational costs and enable 

real-time analysis. As advanced manufacturing and nanotechnology continue to push design 

boundaries, these data-driven approaches will become indispensable for characterizing, 

predicting, and optimizing transport phenomena at the smallest scale. Future challenges include 

improving interpretability, ensuring generalization beyond training conditions, and achieving 

reliable uncertainty quantification. Nevertheless, ongoing progress in blending physical priors 

with flexible learning architectures underscores the transformative role that ML plays in 

nanoscale transport modeling and simulation. 

 

3.2 ML Adoption in Physics community  

The adoption of machine learning (ML) in physics has grown substantially, but the 

emergence of Physics-Informed Neural Networks (PINNs) since their popularization in 2018 

marks a particularly transformative trend. Publication data illustrates this explosive growth, 

with the annual number of articles on PINNs increasing from approximately 120 in 2018 to 

over 2,000 by 2023. This momentum has continued, with the number of publications on track 

to match or exceed previous years in 2025, based on year-to-date data. This rapid expansion 

underscores a significant shift in computational physics, where PINNs evolve from a niche 

methodology to a foundational tool for solving complex, data-sparse problems by embedding 

physical laws directly into the learning process [40, 52]. The results are summarized in Fig. 2. 
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Fig. 2. Annual publications on Physics-Informed Neural Networks (PINNs) and 

variants, 2017–2025 (YTD). Counts aggregated from Dimensions.ai 

Рис. 2. Річна кількість публікацій, присвячених фізично-інформованим нейронним 

мережам (PINNs) та їхнім варіантам, за 2017–2025 роки (на поточний момент). 

 

We quantified the annual publication counts for PINNs and related variants (2017–2025 

YTD) across physics, transport phenomena, and materials/nanomaterials using the 

Dimensions.ai API. Queries targeted titles, abstracts, and keywords (e.g., “physics-informed,” 

PINN/XPINN/fPINN) with subject-area/domain filters when supported. Records from multiple 

endpoints were duplicated using the DOI or normalized titles. Counts were then aggregated by 

calendar year and subfiltered for transport-focused topics. The 2025 bar reflects data through 

August only; we mark it ‘YTD’ and avoid year-over-year inferences. 

Within this trend, fields such as materials science, nanomaterials, and transport 

phenomena have become key areas for PINN application. While the overall volume of ML 

publications in these domains is large, exceeding 1,000 articles annually since 2021, PINNs are 

carving out a critical and rapidly growing niche. As shown in the accompanying chart, PINN-

related publications on transport phenomena and materials science have increased steadily. 

Furthermore, within the broader paradigm of physics-informed machine learning (PIML), 

PINNs and their variants are overwhelmingly dominant, accounting for over 90% of 

publications in this subfield since 2021 and projected to reach 97% by 2025 based on partial 

data. The proliferation of specialized modifications such as XPINN, PIKAN, and ST-PINN 

further signals the maturation of the field as researchers actively work to enhance the stability, 

accuracy, and efficiency of these powerful models. [8] 

 

3.3 Overview of Existing ML Methods in Physical Applications 

Having established the computational bottlenecks of traditional methods, we now survey 

a portfolio of emerging machine learning techniques. Each method offers a unique approach to 

overcoming a specific classical limitation, from the high cost of re-simulation to the difficulty 

of discovering governing equations from the data. 

Below is an overview of notable machine learning (ML) methods that have been applied 

to modeling physical systems, with particular attention to how these approaches incorporate 

physics-based principles, operator learning, and hybrid strategies. The discussion highlights 

key techniques—Hamiltonian/Lagrangian neural networks, operator-based methods (Fourier 

and Deep Operator Networks), sparse discovery frameworks (SINDy), neural ordinary 

differential equations  (ODE), and partial MLphysics hybrids—followed by examples in 

quantum settings and a short note on limitations. While each method exhibits unique strengths, 

they collectively illustrate the emerging trend of physics-informed machine learning to tackle 
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the complexity of real-world dynamics and transport phenomena. See Table 3 for landmark 

applications and representative results. 

 

Table 3 

Таблиця 3 

Landmark applications in nanoscale transport: method family, problem/feature, task, 

key result, and citation. 

Знакові застосування в нанорозмірному транспорті: сімейство методів, 

проблема/особливість, завдання, ключовий результат та цитування.  

Method Problem / Feature Key Result Authors 

(Year) 

PINN 

(Parametri

c) 

Stationary, 

mode‑resolved phonon 

BTE (1D–3D) 

Accurate phonon transport without 

labeled data; solutions over 

parameterized spaces 

Li R. et al. 

(2022) 

PINN 

(Transient) 

Time‑dependent, 

mode‑resolved phonon 

BTE (TDTR) 

Excellent agreement with 

analytical/transient heat conduction 

benchmarks 

Zhou J. et 

al. (2023) 

Hamiltonia

n NN 

(HNN) 

Learning conserved 

quantities 

Enforces conservation laws; 

improved long‑term 

stability/generalization 

Greydanus 

S. et al. 

(2019) 

Lagrangia

n NN 

(LNN) 

Dynamics without 

canonical coordinates 

Energy‑preserving; more flexible 

than HNNs for some systems 

Cranmer 

M. et al. 

(2020) 

Fourier 

Neural 

Operator 

(FNO) 

Parametric PDEs 

(Burgers, Darcy, 

Navier–Stokes) 

Zero‑shot super‑resolution; up to 

~10^3× faster than solvers at 

inference 

Li Z. et al. 

(2021) 

DeepONet Learning non-linear 

operators 

Operator‑learning architecture with 

strong generalization to new inputs 

Lu L. et al. 

(2019) 

SINDy + 

Autoencod

er 

Discovering reduced 

coordinates & governing 

equations 

Joint discovery of latent coordinates 

and sparse governing laws 

Champion 

K. et al. 

(2019) 
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Δ‑PINN PDEs on complex 

geometries (e.g., 

Stanford bunny) 

Laplace–Beltrami encoding enables 

solutions on complex topologies 

Costabal F. 

S. et al. 

(2023) 

fPINN Fractional advection–

diffusion 

(forward/inverse) 

Extends PINNs to fractional 

operators 

Pang G. et 

al. (2018) 

 

3.3.1 Hamiltonian and Lagrangian Neural Networks 

Classical Molecular Dynamics simulations, while powerful, often suffer from long-term 

energy drift owing to numerical integration errors. To address this fundamental stability issue, 

Hamiltonian (HNNs) and Lagrangian Neural Networks (LNNs) are designed to prioritize the 

conservation laws intrinsic to classical mechanics. HNNs learn a Hamiltonian function from 

data and enforce Hamilton’s equations, thereby preserving an energy-like quantity across 

extended time horizons [17]. 

Specifically, a neural network is trained to approximate a scalar Hamiltonian function, 

𝐻𝜃(𝒒, 𝒑), where 𝒒 and 𝒑 are the generalized coordinates and momenta, respectively. The 

dynamics are then predicted by solving Hamilton's equations using the network output: 

 𝑞̇ =
∂𝐻θ

∂𝑝
,  𝑝̇ = −

∂𝐻θ

∂𝑞
 (9) 

Derivatives were efficiently computed via automatic differentiation. This structure hard-

codes the conservation of energy in the model's architecture. By taking position-momentum 

pairs as inputs and computing the partial derivatives of a learned scalar output, HNNs directly 

encode symplectic geometry into their structure. Consequently, they tend to maintain physically 

meaningful orbits in the phase space longer than generic neural networks, which often suffer 

from numerical energy drift. 

LNNs adopt a complementary viewpoint, working in generalized coordinates and 

learning the underlying Lagrangian [18]. Under this paradigm, Euler–Lagrange equations are 

used to predict accelerations, ensuring adherence to conservation principles such as energy or 

momentum. One chief advantage of LNNs over HNNs is their coordinate-agnostic formulation, 

rendering them well suited to problems where canonical momenta may be difficult to define 

(e.g., in relativistic or constrained systems). Both Hamiltonian and Lagrangian frameworks 

demonstrate reduced long-term error accumulation compared with traditional architectures, 

thus providing stable predictions even for highly non-linear or chaotic dynamical systems. 

 

3.3.2 Fourier Neural Operators 

A critical bottleneck for traditional BTE or MD solvers is the 'one-shot' problem: a costly 

simulation must be re-run from scratch for every new set of boundary conditions or material 

parameters. To overcome this barrier to rapid design and optimization, operator-learning 

networks such as the Fourier Neural Operator (FNO) and DeepONet have been developed, 

which seek a resolution-invariant representation of partial differential equation (PDE) solutions 

[19]. This approach replaces the pointwise or convolution layers with integral kernels 

represented in the frequency domain. By performing a truncated Fourier transform of the hidden 

layer activations, frequency-dependent weights that act non-locally in the physical space are 

learned. The core of an FNO layer is the replacement of standard convolutions with a Fourier-

domain spectral convolution. For an input function 𝑣𝑡(𝑥), the operation is defined as 

 𝑣𝑡+1(𝑥) = σ (𝑊𝑣𝑡(𝑥) + ℱ−1 (𝑅ϕ ⋅ (ℱ𝑣𝑡)) (𝑥)) (10) 
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where ℱ and ℱ−1are the Forward and inverse Fourier transforms, respectively, 𝑅𝜙 is the 

learned linear transform in the frequency domain, 𝑊 is a local linear transform, and 𝜎 is an 

activation function. This allows the model to learn global-resolution-independent patterns 

efficiently. 

The primary appeal of FNOs is their speed and flexibility. Once trained on representative 

examples of parametric PDEs (e.g., different initial conditions or source parameters), the FNO 

can rapidly generate high-fidelity solutions for new parameter instances without retraining. 

Additionally, it exhibits mesh independence, meaning that a single model can be evaluated 

seamlessly at multiple spatial resolutions, an invaluable property when tackling multiscale or 

high-dimensional phenomena where standard solvers may become prohibitively expensive. 

Despite their advantages, FNOs have significant practical limitations that must be 

considered. First, their reliance on the Fast Fourier Transform (FFT) inherently restricts them 

to uniform grids and periodic or rectangular domains, posing a major challenge for the complex 

irregular geometries common in nanodevices. Proposed solutions such as Geo-FNO aim to 

address this by using a learned coordinate transformation to map an irregular physical domain 

to a uniform latent grid, where the FFT can be applied. Second, because Fourier transform 

emphasizes global interactions, FNOs can struggle to capture important local spatial features. 

Training an FNO is a data-hungry process that often requires thousands of high-fidelity 

simulation examples to learn the operator, which can be a significant bottleneck in 

computationally expensive nanoscale problems. 

 

3.3.3 Deep Operator Networks 

Deep Operator Networks (DeepONets) also focus on learning operators rather than 

merely mapping a fixed-dimensional input to an output vector [20]. The key concept involves 

splitting the network into two parts: a “branch” network that encodes the input function 

(sampled at sensor points) and a “trunk” network that encodes the coordinates at which the 

output function is evaluated. By constructing an inner product of the branch and trunk 

embeddings, the final output captured the entire function-to-function mapping.  

The architecture explicitly represents the operator 𝐺 mapping an input function 𝑢(𝑥)) to 

an output function 𝐺(𝑢)(𝑦). The output was approximated as follows: 

 𝐺(𝑢)(𝑦) ≈ ∑ 𝑏𝑘(𝑢(𝑥1), … , 𝑢(𝑥𝑚))𝑝
𝑘=1 ⋅ 𝑡𝑘(𝑦) (11) 

where the "branch" network produces coefficients 𝑏𝑘 from the input function 𝑢 sampled 

at 𝑚 points, and the "trunk" network produces a basis of functions tk evaluated at the output 

coordinate 𝑦. 

This structure is particularly advantageous in scientific contexts where one must predict 

not a single value, but rather a continuous field governed by PDEs, such as heat or mass 

distributions in transport problems. 

DeepONets have garnered interest because they readily incorporate known boundary 

conditions or observational data while preserving their ability to extrapolate to new scenarios. 

They are further extensible to inverse problems and parametric studies, where one seeks to infer 

the material coefficients, force terms, or boundary conditions from sparse measurements. Their 

operator-centric perspective aligns well with the mathematics of PDEs and provides a compact 

representation that remains robust under domain or parameter changes. 

The implementation hurdles for DeepONets also warrant further discussion. They can 

struggle to extract representative features from inputs with intricate structures, such as porous 

media, which are analogous to nanostructured materials. The data requirements for training can 

lead to significant memory (RAM) bottlenecks, particularly when both the input and output 

functions are defined over high-resolution spatial domains. Furthermore, for time-dependent 

problems, vanilla DeepONets can suffer from stability degradation and error accumulation 

during long-term prediction. This has necessitated architectural extensions such as Physics-
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Informed Time-Integrated (PITI)-DeepONet, which is specifically designed to improve long-

term accuracy by integrating the time dimension more robustly. 

 

3.3.4 SINDy, Neural Implicit Flows, and Related Sparse Discovery Methods 

While classical models assume that the governing equations are perfectly known, real-

world nanoscale systems may exhibit unmodeled physics or emergent behaviors that are 

difficult to derive from first-principles. To tackle this challenge of model discovery, methods 

such as Sparse Identification of Non-linear Dynamics (SINDy) aim to discover governing 

equations or latent variables directly from the data. They merged sparse regression with a 

library of candidate functions to identify minimal, interpretable expressions describing the 

observed dynamics [21].  

Given time-series data for state vector 𝑥(𝑡), SINDy constructs a library of candidate non-

linear functions 𝛩(𝑥) = [1, 𝑥, 𝑥2, 𝑠𝑖𝑛(𝑥), . . . ]. It then solves a sparse regression problem to find 

a sparse matrix of coefficients 𝚵 that best fits the dynamics. 

 
𝑑𝒙

𝑑𝑡
= 𝚯(𝒙)𝚵 (12) 

The nonzero elements of 𝚵 reveal the terms that constitute the governing differential 

equation. 

When coupled with autoencoders or other neural components, SINDy extends to high-

dimensional signals by learning a low-dimensional embedding that allows a concise set of 

governing equations. Such frameworks show promise in uncovering hidden variables or 

manifold structures, improving long-term predictive stability, and preserving interpretability, 

traits that are often compromised in purely black-box models. 

Parallel to sparse regression initiatives are neural implicit flow models, which infer 

continuous transformations of probability densities without requiring the explicit inversion of 

large Jacobians. By adopting continuous formulations, these “normalizing flow” methods can 

embed physical constraints and invariants, offering yet another avenue to incorporate domain 

knowledge into generative modeling. Although these techniques have primarily appeared in 

computational fluid dynamics, they are increasingly being tested in broader contexts such as 

reactive transport in porous media or micro/nanoscale flows. 

However, a critical discussion of SINDy highlights its primary weakness of extreme 

sensitivity to measurement noise, which is ubiquitous in nanoscale experiments. The core of 

the SINDy algorithm requires the estimation of time derivatives from data, a process that 

notoriously amplifies noise and can lead to the identification of spurious or incorrect physical 

terms in the discovered model. Several techniques have been developed to improve their 

robustness in real-world applications. These include Ensemble-SINDy (E-SINDy), which 

leverages bootstrap aggregating to build a more stable model from multiple fits on subsets of 

noisy data [21], and Bayesian-SINDy, which recasts the problem in a probabilistic framework 

to quantify uncertainty and improve model selection in noisy, data-scarce regimes. 

 

3.3.5 Neural Ordinary Differential Equations 

Neural ODEs [22] present an alternative method for building continuous-depth neural 

networks. Instead of stacking a discrete number of layers, NODE defines the transformation of 

its hidden state 𝑧 as a continuous process governed by an ordinary differential equation (ODE), 

which is parameterized by a neural network  𝑓𝜃: 

 
𝑑𝑧(𝑡)

𝑑𝑡
= 𝑓θ(𝑧(𝑡), 𝑡) (13) 

The output of the "network" is then the solution to this ODE at a specific time 𝑇, found 

by integrating from the initial time 𝑡0: 

 𝑧(𝑇) = 𝑧(𝑡0) + ∫ 𝑓θ(𝑧(𝑡), 𝑡)𝑑𝑡
𝑇

𝑡0
 (14) 
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This can be seen as a continuous analog of a Residual Network (ResNet), where a ResNet 

performs a discrete update: 

 𝑧𝑡+1 = 𝑧𝑡 + 𝑓(𝑧𝑡) (15) 

, whereas a NODE makes this update process continuous. 

This continuous formulation provides two notable benefits: any modern adaptive ODE 

solver can be used for the forward pass, and the memory cost of backpropagation via the adjoint 

method is constant with respect to the depth. Neural ODEs and their stochastic or partial 

variants have attracted attention for tasks such as time-series forecasting, invertible 

transformations (continuous normalizing flows), and integration with physics-based 

constraints, where the learned function 𝑓𝜃  can represent unknown or complex parts of the 

dynamics of a physical system. 

 

3.3.6 Hybrid ML–Physics Methods and physics-informed dynamic mode decomposition 

As noted in Section 2.2, coupling different classical solvers in a hybrid multiscale 

framework is notoriously complex, often leading to instabilities at interfaces. PIML offers a 

more seamless path to the hybridization of classical physics solvers (e.g., finite element or 

spectral methods) with partial ML components to exploit the strengths of each domain. One 

prominent example is physics-informed dynamic mode decomposition (piDMD), where a low-

order linear operator is sought but constrained to respect known physical principlessuch as 

energy conservation or shift invarianceenforced through manifold constraints [23]. By 

restricting the solution space to operators that satisfy domain knowledge, piDMD reduces 

overfitting, improves interpretability, and can match or surpass standard data-driven 

decompositions for fluid flows, waves, and other large-scale dynamic processes.  

The core idea of Dynamic Mode Decomposition (DMD) is to approximate the system's 

evolution with an optimal linear operator A that maps the state 𝑥𝑘 at one time step to the next: 

𝑥𝑘+1 ≈ 𝐴𝑥𝑘. A physics-informed DMD (piDMD) then imposes physical constraints directly 

onto A—for instance, by requiring its eigenvalues to lie on the unit circle to enforce energy 

conservation in a non-dissipative system. 

More broadly, hybrid strategies might embed a neural model for complicated 

subphenomena (e.g., boundary conditions or local constitutive laws) into a classical solver that 

handles global constraints. This modular design leverages the stability and mathematical rigor 

of well-established methods while harnessing the flexibility of ML to approximate difficult or 

uncertain sub-problems. Such partial MLphysics paradigms often align well with multiscale or 

multi-physics applications, a frequent scenario in nanoscale transport models. For example, in 

the simulation of a modern transistor, a classical finite-element solver can handle heat diffusion 

in the bulk silicon substrate, while a dedicated neural network learns the highly complex, non-

linear thermal boundary resistance at the nanoscale metal-semiconductor interface, a value that 

is notoriously difficult to model from first principles. 

 

3.3.7 Use Cases in Quantum Systems and Other Complex Domains 

Quantum systems exemplify scenarios where ML-based approaches can reduce the 

computational overhead of traditional solvers, particularly for eigenvalue problems such as the 

time-independent Schrödinger equation [24]. 

 𝐻̂ψ(𝑥) = 𝐸ψ(𝑥) (16) 

Here, a Physics-Informed Neural Network is trained to approximate the wavefunction 

𝜓𝜃(𝑥), with both the wavefunction and energy eigenvalue E being the outputs of the learning 

process. The loss function is constructed to enforce the underlying physics without labeled data, 

and typically includes the following: 

• A PDE residual term: 
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 𝐿𝑃𝐷𝐸 = ||𝐻𝜓𝜃̂(𝑥) − 𝐸𝜓𝜃(𝑥)||
2

 (17) 

to ensure the Schrödinger equation is satisfied. 

• Boundary condition term: For example, 

 𝐿𝐵𝐶 = ||𝜓𝜃(𝑥𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦)||
2

 (18) 

for a particle in a box where the wavefunction must be zero at the boundaries. 

• A normalization constraint: 
 𝐿𝑛𝑜𝑟𝑚 = (∫|𝜓𝜃(𝑥)|2𝑑𝑥 − 1)2 (19) 

to enforce the probabilistic nature of the wavefunction. 

By minimizing the total loss 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑃𝐷𝐸 + 𝐿𝐵𝐶 + 𝐿𝑛𝑜𝑟𝑚 (20) 

PINN discovers the physically valid eigenstate and its corresponding energy. This 

approach has also been extended to complex PDEs in astrophysics and plasma physics [25]. 

 

3.3.8 Limitations and Future Prospects 

Despite notable successes, pure ML-based PDE solvers still face significant challenges. 

Issues include high computational costs during training and difficulty in capturing high-

frequency or boundary-layer phenomena. This is largely due to "spectral bias," the inherent 

tendency of neural networks optimized with gradient descent to learn smooth, low-frequency 

functions far more easily than high-frequency ones, causing them to struggle with sharp 

gradients or oscillatory solutions. Moreover, there is a risk of overfitting when data or physical 

constraints are limited [26]. In practice, many of the most successful applications to date are 

hybrid in nature, where a classical framework handles core numerical tasks, and a neural 

network is used selectively to approximate complex substructures or as a surrogate for large-

scale parameter sweeps. 

Ongoing work aims to improve scalability, automate architecture selection, and develop 

adaptive collocation or sampling schemes that refine training where PDE residuals are large. 

Incorporating more advanced physics priors, such as conservation laws, symmetries, or known 

invariants, should further enhance the model stability and interpretability. As research 

continues, these developments may pave the way for robust, widely used ML physics solvers 

that accelerate discovery and design in fields ranging from fluid mechanics and materials 

science to quantum information. A comparative overview of these key approaches is presented 

in Table 5. 

 

4. Physics-Informed Neural Networks (PINNs) and Related Approaches 

Although traditional machine learning is a powerful tool for data analysis, Physics-

Informed Neural Networks (PINNs) are the quintessential embodiment of the paradigm of 

fusing data with physical laws. They construct the required bridge by embedding the governing 

equations directly into the learning process. 

 

4.1. Core Concept: Why Physics-Informed Neural Networks? 

Advances in data-centric methods have transformed the landscape of simulation and 

modeling; however, purely data-driven strategies often struggle when measurements are sparse 

or parameter spaces are large. Physics-Informed Neural Networks (PINNs) present an 

alternative by embedding governing physical laws, expressed as partial differential equations 

(PDEs) or integral constraints, directly into the training process of a neural network. In classical 

machine-learning approaches, one trains a model solely on input–output data, with no built-in 

guarantee that the predictions will adhere to known laws of physics. By contrast, PINNs 

incorporate PDE residuals, boundary conditions, and other domain knowledge into the loss 
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function, penalizing solutions that deviate from fundamental conservation or constitutive laws 

[25, 27, 28]. One can think of it in this way: a standard neural network is like a student who 

learns only from a sparse set of correct answers (the training data). A PINN is like a student 

who has the same answer sheet but also a "physics coach, " who constantly checks their work 

everywhere else, penalizing any reasoning that violates fundamental laws (the PDE residual). 

This analogy highlights the transformation of the workflow. A classical solver is a student who 

can solve only the exact problems they are given. The PINN, guided by its 'coach,' learns the 

underlying principles, allowing it to generate a continuous, physically valid solution across the 

entire domain—effectively turning a sparse data problem into a well-posed physics problem. 

This principle becomes especially relevant for nanoscale transport problems, which often 

exhibit unique or extreme regimes (e.g., ballistic–diffusive conduction or strong thermal non-

equilibrium). At such small scales, experiments may be expensive or challenging, yielding only 

partial or localized data—like temperature profiles at selected points or times. Moreover, 

classical continuum models (e.g., Fourier’s law in heat conduction) can fail, and direct 

Boltzmann-based or kinetic models are computationally prohibitive for multi-dimensional, 

time-dependent problems [13, 38]. By fusing small experimental datasets with first-principles 

PDE constraints, PINNs offer a path toward physically consistent surrogate modeling that does 

not require dense measurements. 

Several other factors underscore the appeal of PINNs in nanoscale transport: 

Sparse or Partial Data: The ability to handle incomplete or noisy measurements is 

critical. PINNs can “fill in the gaps” by enforcing a PDE that governs the entire domain, 

effectively interpolating between known sensor points in a manner consistent with physical 

principles [42]. 

Complex PDEs: Submicron systems often require Boltzmann Transport Equation or 

fractional PDEs to capture memory effects and ballistic transport [13, 33, 38]. Traditional 

solvers in high-dimensional momentum or frequency spaces can be intractably large. PINNs, 

on the other hand, allow a mesh-free approach with the direct integration of boundary terms or 

scattering laws through the loss function. 

Inverse/hybrid scenarios: In nanoscale research, unknown boundary conditions, 

scattering coefficients, or doping profiles may be as critical as the solution itself. PINNs can 

simultaneously solve these unknowns by treating them as learnable parameters under PDE 

constraints and effectively performing PDE-constrained optimization with minimal data [28, 

29]. 

Hence, the “physics-informed” paradigm helps to avoid unphysical overfitting. The 

model is guided by fundamental transport equations in addition to standard data-driven loss 

terms, leading to solutions that remain faithful to the continuity, momentum, energy 

conservation, or scattering rules. 

 

4.2. Architecture, Loss Function, and Training 

4.2.1. General PINN Architecture 

A typical PINN for solving PDE-based problems approximates the unknown solution 

𝑢θ(𝑥, 𝑡) — or a more elaborate multi-variable function if the velocity, frequency, or 

polarization spaces are includedthrough a feed-forward neural network [20, 25]. The inputs to 

the neural network are the coordinate or state variables (e.g., space, time, and wavevector), and 

the outputs are physical fields, such as temperature, concentration, velocity potential, or mode-

resolved distribution functions. Rather than performing finite-difference or finite-element 

schemes to approximate derivatives, one uses automatic differentiation on the neural network 

itself to compute the partial derivatives that appear in the PDE residual [25, 27, 40]. 

For example, when modeling phonon transport in a microdevice, one might feed (𝑥, 𝑡, 𝑘) 

into a network that outputs the phonon distribution 𝑓θ(𝑥, 𝑡, 𝑘). The PDE residual includes the 
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streaming (advection in 𝑘-space) and collision terms. Because neural networks are universal 

function approximators, in principle, they can represent the underlying solution. Importantly, 

the topology of the network and the choice of activation functions (e.g., hyperbolic tangent vs. 

sine-based) can significantly impact the training speed and accuracy, especially when sharp 

gradients or wave-like solutions are involved [35, 39]. 

 

4.2.2. Loss Function Construction 

The construction of this total loss function is the foundation of the PIML paradigm. 

Fusion of sparse, varied information sources—governing laws (𝐿PDE), boundary constraints 

(𝐿BC/IC), and sparse physical measurements (𝐿data) — occurs. The training process does not 

merely fit data; it searches for a solution that simultaneously satisfies all these constraints, 

making it a powerful tool for both forward prediction and inverse inference.PDE Residual: Let 

𝒩 denote the PDE operator, for instance: 

 𝒩[𝑢θ(𝑥𝑖)] = 0, (21) 

for collocation points {𝑥𝑖}𝑖=1
𝑁col. The PDE residual loss is typically 

 𝐿PDE =
1

𝑁col

∑ (𝒩[𝑢θ(𝑥𝑖)])2𝑁col

𝑖=1 . (22) 

For the Boltzmann equation, 𝒩 includes streaming (advection in the phase space) and 

collision integrals [13, 38]. In fractional PDEs, 𝒩 represents operators with noninteger 

derivatives [33]. 

Boundary and Initial Conditions: Known boundaries or initial data can be applied via 

“soft constraints” (penalty terms) or “hard constraints” (analytic embedding). In the soft-

constraint approach, the loss function has the following additional terms. 

 𝐿BC/IC =
1

𝑁BC

∑ (𝑢θ(𝑥𝑗) − 𝑔BC(𝑥𝑗))
2

𝑁BC

𝑗=1 , (23) 

to ensure that the neural solution matches the measured or prescribed values 𝑔BC at the 

boundary points {𝑥𝑗}𝑗=1
𝑁BC [25, 28]. Alternatively, a “hard constraint” technique analytically 

imposes the PDE constraints by rewriting the neural network output to satisfy the boundary 

conditions [28]. 

Experimental/observational data: In many nanoscale contexts, partial temperature or flux 

measurements are available using advanced metrology techniques (e.g., thermoreflectance). 

These data points can be integrated into a 

 𝐿data =
1

𝑁data

∑ (𝑢θ(𝑥𝑘) − 𝑢obs(𝑥𝑘))
2𝑁data

𝑘=1 , (24) 

ensuring that the solution is faithful to real observations [28, 29, 42]. 

The total loss 𝐿total is typically a weighted sum of these terms: 

 𝐿total = αPDE 𝐿PDE + αBC 𝐿BC/IC + αdata 𝐿data, (25) 

where the weights α’s are chosen heuristically or using adaptive techniques [29, 30]. 

 

4.2.3. Training and Optimization 

Once the loss function is defined, training proceeds via gradient-based optimizers (e.g., 

Adam and RMSProp) to update the network parameters θ [27]. 

The core of the training process is to iteratively update the network parameters θ to 

minimize the total loss function L_total. This is achieved through gradient-based optimization, 

where the basic update rule is 

 θ𝑘+1 = θ𝑘 − η∇θ𝐿total (26) 

where θ𝑘 represents the parameters at iteration k, η is the learning rate, and ∇θ𝐿total is the 

gradient of the loss with respect to the parameters computed via backpropagation. 

Often, one follows with a second-stage optimizer (e.g., L-BFGS or quasi-Newton 

method) to refine the convergence. Domain decomposition methods such as conservative 
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PINNs (cPINNs) or extended PINNs (XPINNs) can further alleviate the difficulties posed by 

steep gradients or high-dimensional PDE spaces [30]. 

The multiterm loss can be unbalanced if the PDE residual is orders of magnitude different 

from the boundary/data residual, potentially causing optimization stagnation or “spectral bias.” 

Techniques such as dynamic reweighting of loss terms or progressive training (“curriculum 

learning”) help maintain equilibrium during optimization [29]. Despite these complexities, the 

synergy between PDE constraints and data typically yields solutions that track essential physics, 

even with small training sets. 

 

4.3 Variants and Improvements of PINNs 

As the PINN framework has matured, researchers have proposed numerous extensions to 

handle specialized PDE forms, multiresolution domains, or more advanced operator-learning 

scenarios: 

 

4.3.1 Fractional PINNs 

Fractional-order PDEs emerge in anomalous diffusion or in systems with non-local 

memory effects, as observed in nanoscale mass/charge transport in porous media [33]. For 

instance, fractional advection–diffusion equations can capture heavy-tailed probability 

distributions of random walks. As standard automatic differentiation cannot directly compute 

fractional derivatives, fractional PINNs rely on numerical quadratures or finite-difference 

stencils to approximate these operators. The PDE residual is then included in the loss function, 

allowing the model to learn solutions with long-range correlations or fractal scaling behaviors 

[33]. 

Because standard automatic differentiation cannot compute fractional derivatives, the 

fPINNs approximate them numerically. A common definition is the Grünwald-Letnikov 

fractional derivative of the order α: 

 𝐷α𝑓(𝑥) = lim
ℎ→0

1

ℎ𝛼
∑ (−1)𝑘(𝛼

𝑘
)

⌊𝑥/ℎ⌋
𝑘=0 𝑓(𝑥 − 𝑘ℎ) (27) 

where (𝛼
𝑘

) is the generalized binomial coefficient. This formulation shows that the 

derivative at point 𝑥 depends on all past values of the function, capturing the memory effects 

inherent in many anomalous transport phenomena. 

 

4.3.2 Physics-Based Activation Functions 

A crucial challenge in PINNs is capturing oscillatory or steep-gradient solutions with 

standard activation functions (such as  𝑡𝑎𝑛ℎ). Incorporating domain knowledge into activation 

layers, for example, using sine functions for wave-dominated PDEs or exponential forms for 

decay processes, can improve the accuracy and reduce training epochs [35, 39]. Physical 

Activation Functions (PAFs) can directly embed known solution motifs into a neural network, 

enabling more efficient coverage of the solution space. 

For example, to capture a wave-like solution, the network output 𝑢𝜃(𝑥, 𝑡) can be 

constructed as a composite function:  

 𝑢𝜃(𝑥, 𝑡) = 𝑁𝜃(𝑥, 𝑡) ⋅ sin(𝜔𝑥 − 𝑘𝑡) + mean (28) 

In this structure, a standard neural network𝑁𝜃(𝑥, 𝑡) learns the wave's amplitude 

modulation, while the `sin` function explicitly imposes the underlying oscillatory physics. 

 

4.3.3 Neural Operators 

Distinguishing the goal of a standard PINN from that of a neural operator is crucial. A 

standard PINN was trained to solve a single instance of a PDE with fixed parameters and 

boundary conditions. The network must be retrained if the boundary conditions change. By 

contrast, a neural operator learns the entire solution operator for a family of PDEs. 
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Rather than learning a single PDE solution, neural operators (Fourier Neural Operator, 

DeepONet) aim to learn the mapping from input functions (e.g., boundary conditions or 

material parameters) to solution fields [19, 20, 34]. This approach is suitable for repeated PDE 

solutions, such as parametric sweeps over doping concentrations in semiconductors or 

geometric changes in microdevices. Once trained, a neural operator can instantly infer the 

solution for new input functions, offering near-real-time PDE simulations for design or 

optimization loops.  

This makes them exceptionally powerful for parametric design sweeps or uncertainty 

quantification, in which the governing PDE must be solved thousands of times with varying 

inputs. The tradeoff is that training a neural operator is significantly more data-hungry and 

computationally intensive than training a standard PINN for a single case. 

 

4.3.4 Hybrid or Mechanistic–AI Approaches 

Sometimes, domain decomposition or subphysics models can be coupled with a PINN. 

For instance, a partial solver can handle ballistic regimes of transport, whereas PINN manages 

diffusive subdomains with uncertain boundary fluxes [30, 36]. Alternatively, a “relaxation 

network” can approximate the complicated Boltzmann collision operator in momentum space, 

preserving conservation laws while speeding up full PDE solutions [42]. These hybrid 

frameworks allow large-scale or multiphysics problems, such as ballistic–diffusive phonon 

flows or multiionic reactive transport, to be addressed with more tractability. 

 

4.3.5 Extended or Conservative PINNs 

XPINNs and cPINNs partition the domain into subregions with separate networks, 

enforcing the continuity of the flux or solution across subdomain boundaries [30]. Such local 

networks can capture steep gradients or shock layers better by focusing on smaller pieces of the 

domain. In particular, cPINNs maintain global conservation properties by matching fluxes 

across interfaces, which is vital for correct mass and energy budgets [30]. 

These methods enforce physical constraints at the interface Γ𝑖𝑗 between the two 

subdomains 𝛺𝑖 and 𝛺𝑗. For neural network solutions 𝑢𝑖 and 𝑢𝑗in in each subdomain, the 

following conditions are enforced via the loss function:  

• Continuity of the solution: 

 𝑢𝑖(𝑥) − 𝑢𝑗(𝑥) = 0,  for 𝑥 ∈ Γ𝑖𝑗 (29) 

• Continuity of the flux (for a diffusion problem): 

 ∇𝑢𝑖(𝑥) ⋅ 𝑛 − ∇𝑢𝑗(𝑥) ⋅ 𝑛 = 0,  for 𝑥 ∈ Γ𝑖𝑗 (30) 

where 𝒏 is the vector normal to the interface. This ensures that the global solution is 

physically consistent and conserves quantities, such as mass or energy, across the entire domain. 

A summary comparison of these primary PINN variants is provided in Table 4. 

 

Table 4  

Таблиця 4 

Comparison of Physics-Informed Neural Network Variants. 

Порівняння варіантів фізико-інформованих нейронних мереж. 

Variant Core Idea Best Use Case Key Limitation 

Standard PINN Solves a single PDE 

instance using a PDE 

residual in the loss. 

Inverse problems 

with sparse data; fixed 

geometry. 

Must be 

retrained for each 
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new problem 

instance. 

fPINN Incorporates 

fractional derivatives 

into the loss function. 

Problems with 

anomalous diffusion 

or non-local effects. 

Calculation of 

fractional 

derivatives can 

be complex. 

XPINN / 

cPINN 

Uses domain 

decomposition with 

separate NNs for 

subdomains. 

Problems with sharp 

gradients, shocks, or 

complex geometries. 

Enforcing 

continuity/flux 

conservation at 

interfaces adds 

complexity. 

Neural Operator Learns the solution 

operator for a family 

of PDEs. 

Rapid parametric 

studies, optimization, 

UQ. 

Requires a large 

dataset of solved 

PDE instances 

for training. 

 

4.4 PINNs for Nanoscale Transport: Boltzmann Transport Equation 

The primary motivation for applying PINNs to the Boltzmann Transport Equation was to 

combat the "curse of dimensionality." In its full form, the phonon BTE exists in 7-dimensional 

phase space (three spatial dimensions, three momentum/wavevector dimensions, and one time 

dimension). Traditional mesh-based solvers become computationally intractable in such high-

dimensional spaces, whereas the mesh-free nature of PINNs offers a viable forward path. 

 

4.4.1 Motivation and Scope 

As device sizes drop to the nanometer regime, standard diffusion-based PDEs 

increasingly fail to accurately describe thermal or charge-carrier transport. The Boltzmann 

Transport Equation (BTE) provides a kinetic description of these carriers (phonons and 

electrons), capturing ballistic effects, mode-dependent scattering, and intricate boundary 

interactions. However, BTE, with high-dimensional phase spaces (spatial, momentum, 

frequency, polarization), can be computationally overwhelming for classical solvers [13]. 

Here, PINNs hold promise because: 

• They can incorporate partial data from advanced nanoscale metrologies, for example, 

time-domain thermoreflectance for local flux, while still obeying ballistic–diffusive 

physics [38]. 

• They bypassed extensive mesh generation in the phase space by embedding PDE 

constraints into the loss. 

• They allow parametric or inverse analyses of unknown scattering coefficients or 

boundary conditions within a single training workflow [38]. 

 

4.4.2 Illustrative Approaches 

High Δ𝑇 Boltzmann PDE: Large temperature differences in ultrathin films or 

microdevices can induce strong phonon non-equilibrium, far from standard Fourier conduction. 
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A PINN approach can solve the stationary or transient BTE by penalizing collision integrals in 

the PDE residual, whereas boundary flux data from experiments or classical continuum 

approximations anchor the solution [13]. The network systematically adjusts the scattering 

parameters if they are left as free variables, thereby matching the PDE solution to the measured 

thermal flux. 

Time-dependent Mode-Resolved BTE: In time-domain thermoreflectance experiments, 

short-pulsed laser heating and subsequent relaxation are monitored. Capturing this dynamic 

requires mode-resolved BTE in space and time [38]. Each phonon mode has unique relaxation 

times, velocities, and dispersion relationships. A PINN can approximate the distribution 

function 𝑓θ(𝑥, 𝑡, 𝑘), with the PDE residual enforcing streaming + collision. Sparse data from 

local temperature sensors or transient reflectance signals can help calibrate unknown boundary 

reflectivities or scattering rates. 

Implementing physical boundary conditions: Because nanoscale transport is dominated 

by boundary scattering, the correct implementation of physical boundary conditions is essential 

for the accuracy of the BTE-PINN. Different physical scenarios, such as the specular versus 

diffuse reflection of phonons at an interface, must be encoded into the loss function. For 

specular reflection, the distribution of outgoing particles is a direct mirror of the incoming 

particles, whereas for diffuse reflection, the particles are re-emitted according to an equilibrium 

distribution. Enforcing these distinct mathematical forms within the PINN framework is a key 

area of research and is critical for accurately modeling phenomena, such as thermal boundary 

resistance. 

Multi-Ionic or Multi-Carrier Transport:  In doping or multi-ionic contexts (e.g., Li-ion 

transport and multi-species doping diffusion), partial differential equations become coupled 

across species, and local scattering or reaction rates are uncertain [36]. A PINN can unify these 

PDEs by sharing domain knowledge regarding flux continuity or electroneutrality. Instead of 

individually calibrating each PDE with expensive iterative solvers, the network simultaneously 

fits all species, enforcing PDE coupling constraints and partial data. 

Structure-preserving Boltzmann gates: A primary challenge in formulating a BTE-PINN 

is the collision operator, 𝜕𝑓/𝜕𝑡𝑐𝑜𝑙𝑙. This term is not a simple derivative, but a high-dimensional 

integral operator that accounts for all possible scattering events, making its direct evaluation 

within the loss function computationally prohibitive. To tackle this, recent efforts propose 

training a neural network surrogate, such as a 'RelaxNet,’ for the collision operator itself. [42] 

This is a non-trivial task, as the surrogate must be constrained to preserve physical invariants 

such as the conservation of mass, momentum, and energy. When a structure-preserving 

surrogate is integrated into the PDE residual, the computational overhead is drastically reduced 

by replacing the expensive integral with a learned mapping that still yields physically 

meaningful solutions. 

While PINNs are 'mesh-free,' training a neural network in the BTE's 7-dimensional phase 

space (three spatial, three momentum/wavevector, one time) remains a monumental challenge. 

To overcome this 'curse of dimensionality' without resorting to costly discretizations, recent 

work has introduced the Monte Carlo Physics-Informed Neural Network (MC-PINN). The core 

innovation of this approach is a two-step sampling strategy in which points are first randomly 

sampled in the temporal-spatial domain and then separately in the solid angular domain. The 

final training points are constructed from the tensor product of these two sets, making the 

framework entirely mesh-free and avoiding the need for a priori angular discretization. This 

strategy has proven to be highly effective for multiscale heat conduction, successfully modeling 

the transport from the ballistic to the diffusive regime within a unified framework. Furthermore, 

it is remarkably memory-efficient; for a 3D ballistic transport problem, the MC-PINN requires 

only 16% of the memory of a state-of-the-art deterministic BTE solver [53]. 
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4.4.3 Advantages and Current Challenges 

Failure Mode and Mitigation. PINNs can deal with stiff collision operators, boundary 

layers, and high-frequency content (spectral bias). These difficulties are often rooted in the 

fundamentally complex and rugged loss landscape of physics-informed problems, which are 

fraught with spurious local minima that can trap standard gradient-based optimizers. 

The spectral bias is detrimental. This well-documented challenge refers to the inherent 

tendency of standard neural networks optimized with gradient descent to learn smooth, low-

frequency functions far more easily than high-frequency functions [52]. This limitation is 

critically relevant for nanoscale transport, a field rife with high-frequency phenomena, such as 

sharp temperature gradients at interfaces, ballistic phonon effects, and shock layers. When a 

PINN attempts to learn such a solution, the spectral bias can cause it to converge on an overly 

smooth approximation, failing to capture the physics that defines the nanoscale regime. 

Several state-of-the-art mitigation strategies have been developed to address this critical 

mode of failure. These include: 

• Multiscale or multi-grade network architectures that decompose the problem by 

frequency allow different parts of the network to specialize in learning different 

components of the solution. 

• The use of adaptive activation functions can adjust the slope during training to better 

approximate steep gradients. 

• Fourier feature mapping transforms the input coordinates into a higher-dimensional 

space where high-frequency components are represented by lower frequencies, 

making it significantly easier for the network to learn. 

Remedies include domain decomposition (XPINNs/cPINNs), physics-aware activations 

(sine/exponential), curriculum schedules with loss reweighting, and structure-preserving 

surrogates for the collision terms. Where parametric reuse is required, consider training a neural 

operator against a family of BTE instances, and use a small PINN to enforce constraints locally. 

By directly enforcing Boltzmann-based PDE constraints, PINNs for nanoscale 

conduction or electron transport are promising. 

• Mesh-Free Handling: Sideskipping the need for a fine mesh in high-dimensional 

momentum or frequency space. 

• Direct Data Integration: Surpassing purely numerical PDE solvers by unifying 

experimental data with ballistic–diffusive PDE constraints. 

• Parametric or Inverse Solutions: Simultaneously learning unknown scattering 

parameters, boundary conditions, or doping profiles within the BTE framework. 

However, major hurdles remain to be overcome. High dimensionality, stiff collision 

terms, or steep ballistic boundary layers can hamper the training convergence. In addition, 

guaranteeing global conservation (e.g., net energy and momentum) in strongly anisotropic or 

non-local domains may require specialized network architectures (e.g., cPINNs or structure-

preserving surrogates). Hyperparameter tuning and domain decomposition remain active 

research areas for achieving robust accuracy at scale [38]. Nonetheless, successes in handling 

subcontinuum conduction highlight that PINNs aligned with domain-specific physical 

constraints can significantly advance nanoscale transport modeling [42]. 
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Table 5 

Таблиця 5 

ML-focused summary: method family, short essence, advantages, typical limitations, 

and primary use cases. 

ML-огляд: сімейство методів, короткий виклад, переваги, типові обмеження та 

основні варіанти використання. 

Method 

(family) 

Short Essence Advantages Disadvantages / 

Limits 

Typical Use 

PINNs Solve single 

PDE instance 

via 

PDE‑residual + 

data loss 

minimization 

Data‑efficient; 

inverse problems; 

mesh‑free 

Training 

instability; may 

struggle with 

stiff/high‑freq 

regimes; retrain 

per‑instance 

Sparse/noisy 

data; fixed 

geometry 

inverse 

problems 

Neural 

Operators 

(FNO, 

DeepONet) 

Learn solution 

operator for 

PDE family 

Orders‑of‑magnit

ude faster 

inference; 

generalizes to 

new inputs 

Data‑hungry; 

heavy training; 

sometimes 

grid/BC 

constraints 

Design/optimiz

ation 

surrogates; UQ 

Equation 

Discovery 

(SINDy) 

Sparse 

regression to 

reveal 

governing 

equations 

Interpretable, 

parsimonious 

models 

Sensitive to 

noise; needs 

good 

library/derivative

s 

Discovering 

missing 

physics; model 

reduction 

Symmetry‑

preserving 

NNs 

(HNN/LN

N) 

Encode 

conservation/sy

mmetry via 

Hamiltonian/La

grangian forms 

Physical 

consistency and 

long‑term 

stability 

Limited for 

dissipative/force

d systems (needs 

extensions) 

Conservative 

dynamics, 

long‑horizon 

trajectories 

 

4.5 Concluding Remarks 

Physics-Informed Neural Networks represent a critical shift in computational modeling; 

rather than relying solely on data or classical discretizations, PINNs couple both routes to 

produce solutions that adhere to the underlying physical laws. Their mesh-free nature and 

capacity to incorporate partial data make them particularly appealing for nanoscale transport, 

where Boltzmann-based or fractional PDE descriptions are mandatory; however, direct 

numerical solvers can be too costly. Furthermore, the recent surge in specialized variants, such 

as fractional PINNs, operator networks, and structure-preserving surrogates, illustrates that the 

method remains highly adaptable across diverse transport regimes. 
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Looking ahead, challenges such as optimizing loss weighting, handling multiple stiff PDE 

operators, and ensuring long-term stability in time-dependent problems require sophisticated 

training strategies. Continued innovation in domain decomposition (XPINNs and cPINNs) and 

physically aware network designs (custom activation functions and coupling classical solvers) 

can mitigate these issues. Research efforts have demonstrated that PINNs can unify partial 

measurements and sophisticated PDE operators in a single trainable pipeline, thereby opening 

new directions in nanoscale heat transfer, multi-ionic membrane transport, and quantum-scale 

electronics. As computational power increases and neural frameworks mature, PINNs promise 

to become a cornerstone in bridging experimental data and first-principles modeling for 

advanced nanoscale applications. 

 

5. Data Challenges and Resources in Nanomaterial Research 

Nanomaterial research is critically dependent on reliable data; however, obtaining high-

fidelity datasets at the nanoscale remains a major bottleneck. A key distinction exists between 

computationally generated data derived from first-principles modeling and experimental 

databases that compile the measured results. Although both are essential, they present different 

challenges. High-accuracy simulations (e.g., molecular dynamics or Monte Carlo) are 

computationally expensive, limiting their scope to smaller systems or shorter timescales [14]. 

On the experimental side, measurements can exhibit substantial noise and variability due to 

sample inconsistencies or environmental fluctuations. This data landscape requires 

sophisticated strategies to bridge the gap between theory and reality. 

 

5.1 The Landscape of Open Data Initiatives 

To address these challenges, the materials science community has developed several 

crucial open-data initiatives. These platforms provide programmatic access to vast amounts of 

data, enabling high-throughput screening and training of machine learning models. They can 

be broadly categorized into foundational databases that provide simulation inputs, specialized 

databases with calculated transport properties, and curated experimental datasets for validation. 

 

5.1.1. Foundational Computational Databases 

These repositories serve as bedrock for most computational transport studies, providing 

the necessary inputs for BTE solvers. 

Materials Project (MP) is a massive open-access database containing DFT-calculated 

properties of over 140,000 inorganic compounds. This is the de facto starting point for many 

studies, providing fundamental data such as crystal structures and electronic band structures, 

all accessible via a powerful API. Similarly, phonon properties, which are crucial for calculating 

thermal conductivity, can be found in specialized collections, such as the Figshare dataset by 

Petretto et al. [57] or calculated from MP structures. 

Automatic FLOW for Materials Discovery (AFLOW) is another large DFT database with 

over 3.5 million entries. It serves a similar role to MP, but uses a different set of conventions 

and includes some directly calculated thermal properties using the AGL model for a subset of 

materials. 

Specialized 2D Materials Databases, such as C2DB and 2DMatPedia, focus specifically 

on two-dimensional materials. They are invaluable for researching nanoscale transport in low-

dimensional systems, providing not only structures and band structures but also key parameters 

for BTE calculations, such as deformation potentials and effective masses. 

 

5.1.2. Specialized Transport Property Databases 

These databases go a step further by performing computationally intensive BTE 

calculations and obtaining the resulting transport coefficients. Crucially, these high-fidelity 
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BTE solvers rely on the foundational computational databases mentioned previously, such as 

the Materials Project (MP) and AFLOW, as the primary sources of their required ab initio inputs 

(e.g., crystal structures and phonon properties). The large-scale datasets generated by these BTE 

solvers, in turn, become essential training data for data-hungry surrogate models, such as PINNs 

or Neural Operators. 

The Dryad dataset by Ricci et al. [54] is a landmark resource that contains the electronic 

transport properties (conductivity and Seebeck coefficient) for nearly 48,000 materials from the 

Materials Project. These properties were calculated using BTE under the Constant Relaxation 

Time (CRT) approximation. This dataset is ideal for training ML models, but it is crucial to 

recognize its underlying physical simplification, as the CRT approximation neglects the energy-

dependent scattering that is crucial in many nanoscale systems. 

 

5.1.3. Key Experimental Datasets 

Experimental databases are essential for validating computational models and grounding 

them in physical reality. 

The Zenodo Interfacial Thermal Resistance (ITR) dataset [55] is a curated collection of 

experimentally measured ITR values from the scientific literature covering approximately 300 

materials. Because interfacial scattering is a dominant mechanism in nanostructures, this 

database is a critical resource for validating models of thermal transport across interfaces. This 

collection serves as a critical benchmark for validating PIML models that aim to solve the 

inverse problem of ITR prediction. Furthermore, such curated experimental compilations have 

been successfully used to train classical ML models (e.g., Support Vector Machines, Gaussian 

Process Regression) to predict ITR, providing a useful baseline against which more advanced 

physics-informed approaches can be compared. 

The OBELiX dataset by Hargreaves et al. [56] provides expertly curated experimental 

data on the ionic conductivities of over 800 solid-state lithium-ion conductors. While focusing 

on a specific application, it serves as the gold standard for validating models of ionic transport 

and demonstrates the value of carefully collected experimental data for machine learning. 

 

5.2. Strategies to Handle Data Limitations 

Even with these resources, researchers must employ robust strategies to address data 

limitations. Multifidelity data approaches, which creatively combine large but approximate 

computational datasets with sparse but high-accuracy experimental measurements, are 

particularly promising. Other key strategies include synthetic data generation to expand limited 

experimental datasets [14, 16], discrepancy modeling to learn the missing physics from 

experimental data [43], transfer learning to leverage knowledge from data-rich domains [45], 

and ensemble methods to enhance noise resilience [44]. 

Physics-informed methods such as PINNs are uniquely suited to this "small data" regime. 

The inclusion of governing equations in the loss function acts as a powerful regularizer, 

enabling physically consistent predictions, even when direct data are unavailable. The 

continued growth of open databases, combined with advanced, physics-aware ML frameworks, 

paves the way for the accelerated discovery and design of nanoscale transport. 

Ultimately, this integration reframes the landscape of data resources as a strategic guide 

for researchers. The choice of PIML method is fundamentally linked to the available data 

regime. If a researcher has access to thousands of simulations across a parameter space—a 'big 

data' scenario—a Neural Operator becomes a viable and powerful tool for creating a fast 

surrogate model. Conversely, if the researcher has only a single, noisy experimental trajectory 

but a well-established governing PDE—a 'small data' scenario—a PINN is the more appropriate 

choice, using physics as a regularizer. Discussing this data-model symbiosis provides readers 

with a practical framework for selecting an appropriate tool for their specific research context. 
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6. Current Gaps and Future Research Directions 

6.1. Bridging Data Scarcity and Multi-Fidelity Requirements 

The chronic scarcity of high-fidelity experimental and simulation data for nanomaterials 

has long been a major bottleneck for traditional modeling. However, this is precisely an 

environment in which the PIML paradigm offers a transformative solution. PIML is uniquely 

designed to thrive on sparse data by embedding physical laws directly into the learning process, 

turning a perceived weakness into a tractable one. This opens the door for multifidelity 

approaches that strategically combine large, low-cost datasets with minimal high-accuracy 

information [4]. 

Multi-fidelity approaches promise to exploit both sparse high-accuracy datasets and 

inexpensive but approximate models. Coarse-grid continuum solvers or simplified ballistic–

diffusive formalisms can map broad parameter spaces, whereas specialized BTE or Monte 

Carlo (MC) solvers refine local regions in which the system exhibits sharp gradients or ballistic 

transport [2, 9]. In machine learning terms, a single neural network may initially learn from 

large amounts of “low-fidelity” data to establish an approximate solution manifold, and then 

incorporate smaller amounts of high-fidelity data to correct local discrepancies. 

Active learning is a key supporting technology, in which the model identifies which 

uncharted or poorly predicted regions would provide the greatest improvement if measured or 

computed at higher fidelity. For example, local sensitivities to boundary conditions or doping 

concentrations may be used to prioritize new simulations using a full BTE solver. By injecting 

only the most informative data points into the training, the total simulation cost can be 

substantially reduced. This is particularly helpful in multi-dimensional parameter spaces where 

naive random sampling becomes infeasible. Physical constraints, such as global energy 

conservation or phonon population balances, also help ensure that model predictions, even in 

regions with limited data, do not drift into non-physical regimes [13, 30]. Representative 

examples of nanomaterials are summarized in Table 6. 

As HPC resources expand, multifidelity schemes can be applied iteratively at scale, each 

time refining a neural network surrogate to capture the elusive features of nanoscale transport. 

In practice, dynamic reweighting or “curriculum learning” can present simpler tasks, such as 

uniform geometries or moderate temperature gradients, and gradually incorporate more extreme 

or localized conditions. Over time, this synergy between HPC-based active learning and physics 

constraints should enable robust PIML models to operate with fewer data demands. 

 

Table 6 

Таблиця 6 

Recent examples from nanoscale ML: system, phenomenon, methodology, key 

quantitative finding, and rationale.  

Нещодавні приклади машинного навчання у нанорозмірних системах: система, 

явище, методологія, ключовий кількісний висновок та обґрунтування. 

Nanomater

ial system 

Transport 

phenomenon 

ML 

methodology 

Key finding / 

Quantitative 

result 

Additional details 

and rationale 

Nanofluid 

Al2O3–

Convective 

heat transfer; 

reconstruction 

of thermal and 

Continuous PINN 

(PDE solver) 

Reconstructed 

fields with error 

<2%; 

outperform 

PINNs reconstruct full 

thermal and 

hydrodynamic fields 

(pressure, 
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Cu/water 

[46] 

hydrodynamic 

fields 

classical 

surrogate models 

for Nusselt 

number and 

Fanning friction 

factor 

temperature, velocity) 

in microchannel 

nanofluid convection; 

better prediction of 

efficiency metrics 

Hybrid 

nanofluid 

Al2O3–

Cu/water 

[46] 

Heat transfer 

and flow; 

uncertainty 

handling with 

sparse data 

Bayesian PINN 

(BIPINN) 

Improved 

accuracy and 

generalization 

under sparse 

data 

BIPINNs predict 

hybrid nanofluid 

performance while 

effectively accounting 

for uncertainty and 

limited data 

Graphene / 

h‑BN 

interface 

[47] 

Interfacial 

thermal 

conductance; 

optimal defect 

structure 

design 

Molecular 

Dynamics (MD) 

+ CNN 

Optimal defect 

configuration 

increases ITC by 

≈97% 

Hybrid MD+CNN 

explores millions of 

defect configurations 

to optimize heat 

transfer across the 

heterointerface 

Graphene 

nanoribbon 

[48] 

Thermal 

conductivity as 

a function of 

porosity 

Molecular 

Dynamics (MD) 

Porosity reduces 

thermal 

conductivity by 

~90% 

Porosity 

fundamentally alters 

phonon transport and 

thermal conductivity 

in graphene 

Electroche

mical 

systems 

(electrodes, 

electrolytes) 

[49] 

Charge/ion 

transport, 

polarizability; 

potential 

energy surface 

modeling 

E(3)-equivariant 

neural potential 

(PiNN package) 

State-of-the-art 

performance for 

polarized 

electrodes; 

excellent results 

for liquid 

electrolytes 

PiNN fits potential 

energy surfaces 

respecting physical 

symmetries; predicts 

quantum properties 

like dipole moments 

and charges 

General 

nanostructur

es (e.g., Si, 

InAs, 

Lattice thermal 

conductivity, 

phonon 

transport; 

ShengBTE 

(iterative phonon 

BTE) / PINN for 

phonon BTE 

ShengBTE: 

computes lattice 

κ and related 

quantities; 

PINN: 

successful 

ShengBTE solves the 

linearized phonon 

BTE; PINNs have 

been applied to 

TD‑BTE 
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lonsdaleite) 

[10] 

phonon 

scattering 

solution of 

time‑dependent 

phonon BTE 

Kinetic 

theory of 

gases [42] 

Approximation 

of the 

Boltzmann 

collision 

operator 

RelaxNet 

(structure‑preserv

ing NN) 

Solutions 

equivalent to 

reference 

Boltzmann 

results 

Solution‑dependent 

equilibrium state and 

relaxation frequency; 

trained on fast spectral 

data with case‑specific 

fine‑tuning 

Interfacial 

thermal 

resistance 

(ITR) [51] 

Predicting ITR 

across 

materials 

SVM, GPR, 

LSBoost 

Good agreement 

with 

experimental 

data 

Classical ML 

regressors used to 

estimate ITR, a key 

parameter for thermal 

management in 

nanomaterials 

Silicon 

(phonon 

MFP 

spectroscop

y) [50] 

Reconstruction 

of phonon 

mean free path 

(MFP) spectra 

MFP 

spectroscopy 

technique 

Recovered MFP 

spectra agree 

with 

first‑principles 

calculations 

Reconstructs MFP 

distributions from 

experimental data 

without parameter 

fitting, enabling 

nanoscale heat 

transport insight 

 

6.2. Handling High-Dimensional PDEs with Reduced Complexity 

When dealing with sub-100 nm transport, phonon scattering becomes highly dependent 

on the frequency, polarization, and direction, leading to a multi-dimensional phase space [2, 9]. 

Even after simplifying the BTE, fully resolving the ballistic–diffusive transition may require 

fine discretization in both real and momentum spaces. Similarly, quantum electron transport in 

extremely confined geometries entails discretizing wave functions across multiple dimensions. 

Such PDEs quickly become intractable to standard solvers. 

In recent years, operator-based neural networks, such as Fourier Neural Operators (FNO) 

or Deep Operator Networks, have been developed to tackle this scenario precisely [19, 32]. 

Instead of learning a function that maps one discrete input (e.g., boundary condition fields) to 

a corresponding discrete output, these models learn mapping from function spaces to function 

spaces. In effect, the operator viewpoint implies that once the network is trained, it can produce 

solutions for different boundary conditions or parameters without having to solve the PDE from 

scratch. This “resolution-agnostic” property is especially appealing for multiscale transport 

problems, where a single fine-scale grid is often insufficient. 

Furthermore, innovative sampling strategies, such as the two-step Monte Carlo approach 

for phonon BTE, can significantly reduce the memory and computational burden of high-
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dimensional kinetic equations without sacrificing accuracy across ballistic-to-diffusive regimes 

[53]. 

Implementation details are important. Large 3D or 4D PDE domains are not trivially 

learned using a single neural operator. Domain decomposition: splitting the problem into sub-

domains, each handled by smaller operator networks, can be combined with HPC 

parallelization. The decomposition approach also helps to enforce boundary conditions 

consistently and ensures that each subdomain model is not overwhelmed by high-dimensional 

complexity [12, 30]. For instance, a user may apply a specialized operator network near 

subcontinuum interfaces, where ballistic scattering dominates, and a more generic network in 

the device interior. 

Realizing operator-based surrogates for BTE-like equations holds promise for rapid 

parametric design and real-time solutions. Important technical challenges include ensuring 

stable training on diverse geometries, capturing sharp discontinuities in the boundary layers, 

and performing spectral domain manipulations (e.g., Fourier transforms) for irregular device 

shapes. Extensions of the existing methods to unstructured meshes or adaptive meshes would 

further broaden their applicability. Once these methods have matured, they can dramatically 

accelerate the design cycles for next-generation transistors and nanophotonic devices by 

replacing repeated PDE solutions with near-instant surrogates. 

 

6.3. Coupling Ballistic–Diffusive Frameworks and Physics-Informed ML 

Modern devices with feature sizes below ~100 nm frequently exhibit neither purely 

diffusive nor ballistic transport. For example, in a thin silicon layer, phonons may behave 

ballistically near boundaries, but scatter sufficiently in the bulk to appear diffusive. 

Conventional continuum models (e.g., Fourier’s law) fail to capture the boundary scattering, 

whereas purely ballistic BTE solutions are prohibitively expensive if extended to the entire 

domain [2, 11]. Hybrid frameworks that solve BTE near boundaries but revert to simpler 

continuum equations in the interior have emerged to address this complexity [12]. 

Physics-Informed neural networks (PINNs) allow PDE residuals to be enforced in the 

training loss, thereby allowing the neural network to approximate the solution directly [13, 38]. 

In a ballistic–diffusive scenario, the network may have to satisfy the BTE in near-boundary 

elements and the diffusion equation in the interior, with boundary conditions at the interface 

ensuring the continuity of temperature or flux. Such domain decomposition is well-suited for 

PINNs: one sub-network can handle the ballistic boundary layer, incorporating a partial phonon 

distribution or specialized flux boundary conditions, while another sub-neutralizing solution 

that deviates from fundamental conservation or constitutive lawspenalizing solutions that 

deviate from fundamental conservation or constitutive lawswork manages the diffusive interior 

region [30]. 

A significant challenge is frequency-dependent (or wavevector) scattering. Real materials 

have phonon modes with different mean free paths and scattering intensities, which vary with 

temperature or doping [4, 36]. In principle, PINNs can track these dependencies if the input 

dimension includes frequency bins. However, training such high-dimensional distributions can 

result in stiffness and instability. Specialized activation functions or local weighting in the loss 

function (to emphasize steep gradients near the boundaries) may be helpful. Another approach 

is to embed partial domain knowledge about scattering selection rules, thereby constraining the 

learned distributions of the network to remain physically meaningful [38, 42]. 

Longer term, robust ballistic–diffusive PINNs or operator networks can unify multiple 

transport pathways, for instance, ballistic phonons coexisting with diffusive electronswithin the 

same computational framework. Practical breakthroughs would reduce the time required to 

converge on solutions for complex device architectures such as gate-all-around nanowire 

transistors or 2D/3D heterogeneous stacks. As manufacturing processes push dimensions 
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deeper into the sub-10 nm realm, these hybrid methods could become a mainstay in thermal 

design workflows.  

A particularly complex and promising direction is to quantitatively model the impact of 

size and geometry on transport by embedding physical boundary scattering models directly into 

the PDE residual of PINN. For instance, instead of merely enforcing a diffusive or specular 

boundary, a future PINN-BTE framework could incorporate terms representing surface-

roughness scattering. This allows for the direct prediction of the thermal conductivity (𝜅) or 

electron mobility (𝜇) scales with a nanowire diameter or width of a 2D nanoribbon. Successful 

training of such a model would require not only solving the BTE, but also accurately 

representing the complex physics of carrier-boundary interactions within the loss function, 

which is a significant challenge at the frontier of physics-informed learning. 

 

6.4. Parameter Estimation, Interfaces, and Uncertainty Quantification 

In nanoscale systems, many parameters, from doping profiles to interface resistances to 

grain boundary scattering lengths, are difficult to measure directly [2, 4]. Even for simpler 

geometries, the presence of doping fluctuations or unknown oxide–semiconductor boundary 

conditions can drastically affect the device performance. Traditional inverse modeling often 

involves repeated PDE solving, each time the guesses for the unknown parameters are adjusted 

until the simulated outputs match the measured data. However, high-dimensional parameter 

spaces and expensive solvers can result in impractically high computational loads. 

One emerging solution is to integrate Bayesian inference with physics-informed 

networks, rather than producing a single “best-fit” parameter set. These methods generate a 

posterior distribution that quantifies uncertainty [30, 36]. Physically, this means that the user 

gains not only a point estimate of, say, an interface thermal conductance, but also a statistical 

confidence interval. This is invaluable in design scenarios where tight tolerance margins matter, 

for example, ensuring that a local hotspot remains below a certain critical temperature. 

Similarly, ensemble methods that build multiple neural approximations (Ensemble-

PINNs or ensemble-SINDy) can evaluate the consistency of each candidate solution with both 

PDE constraints and measurement data [44]. Discrepancy modeling offers another perspective: 

a known PDE-based model is corrected by a learned term that captures unmodeled physics, 

such as extra scattering or boundary friction [43]. This discrepancy approach reduces the risk 

of overfitting by focusing on the learning capacity of the mismatch rather than re-deriving all 

known physics from scratch. 

Bayesian or ensemble-based strategies can be computationally expensive, particularly for 

large-scale 3D devices. However, advanced Markov Chain Monte Carlo (MCMC) 

techniques—possibly combined with low-rank or operator-based surrogates—can mitigate 

these costs [19, 32]. In practice, a robust pipeline might start with a lower-dimensional version 

of the model, estimate parameters coarsely, and iteratively refine to higher fidelity while 

maintaining strict PDE-consistent constraints in the learning process. Such pipelines would 

yield more interpretable and reliable estimates than purely black box methods.  

A significant future challenge lies in using PINNs to model the impact of defects and 

interfaces on transport based on first principles. The goal is to predict interfacial thermal 

resistance (ITR) not as a fitted parameter but as an emergent property. This would require a 

multi-level approach: first, constructing atomistic models of interfaces (e.g., in 

heterostructures) or defects; second, calculating their specific phononic or electronic properties; 

and finally, using a PINN-BTE solver, where the loss function explicitly includes physical 

interface scattering formalisms, such as the Acoustic Mismatch or Diffuse Mismatch models. 

The model predictions were then validated against curated experimental databases of the ITR 

values. This represents a true multiscale challenge, wedding quantum-level structural inputs to 

meso-scale transport phenomena through a physics-informed deep learning framework. 
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6.5. Real-Time Digital Twins and Control of Nanoscale Systems 

The ultimate application of a fast, data-driven, and physically consistent modeling 

paradigm is the creation of real-time digital twins, a goal completely out of reach for traditional, 

computationally intensive solvers. The PIML workflow, particularly trained neural operators, 

makes this possible. By replacing the slow PDE with near-instantaneous surrogate models, a 

digital twin can ingest live sensor data from a physical device, infer the complete thermal and 

electrical state in real time, and inform a control loop to optimize performance and prevent 

failure. This represents the final step in the paradigm shift, moving from offline analysis to 

online adaptive control. 

This is especially true for ballistic–diffusive phenomena that require multiscale PDE 

solutions [2, 11]. The concept of a digital twin, that is, a virtual model that mirrors the physical 

device in real time, demands a predictive engine that can ingest sensor data on the fly and update 

temperature or flux fields with minimal latency. A critical step toward this goal is the 

development of generalizable models that can adapt to new data or conditions without complete 

retraining. Meta-learning via neuroevolution provides a powerful framework. For instance, the 

"Baldwinian-PINN" approach uses an evolutionary algorithm to discover a model initialization 

that can be rapidly adapted to solve new PDE instances, such as those with different boundary 

conditions or material parameters, with a single near-instant update step. The ability to quickly 

specialize a pre-trained, physics-aware model is a key enabler for the practical deployment of 

real-time digital twins in nanoscale applications.[52] 

Trained neural surrogates, particularly operator-based models, can produce full-field 

solutions in microseconds once properly trained [19, 41]. With integrated sensors providing 

boundary conditions or partial state measurements, these surrogates could be re-tuned “online” 

to correct for drift or unforeseen disturbances. In the simplest scenario, a PIML model runs in 

parallel with the device, receiving measured data (e.g., local transistor temperatures or a set of 

thermal sensor readings) and rapidly inferring a global heat map. This map then feeds a control 

loop that adjusts the operating voltages, fan speeds, or gating patterns. 

Sensor Integration: The device must be instrumented with appropriate thermal or 

electrical sensors, whose data can be fed into the surrogate network in real time. 

Model order reduction: An operator-based model can be too large if the domain is 

complex. Domain-decomposition strategies or multifidelity subnetwork approaches help 

maintain a low real-time inference overhead. 

Robustness Under Uncertainty: Real sensor data can be noisy or partial. Probabilistic 

frameworks, data assimilation, and regularization can maintain the stability of the model and 

prevent erratic updates. 

In advanced chip designs, dynamic thermal management might involve partially 

“throttling” certain areas, redistributing tasks to cooler regions, or reconfiguring doping as the 

operating conditions evolve. These capabilities require the synergy of HPC-grade offline 

training, physics-informed constraints, and real-time streaming sensor data. Success in this area 

would significantly reduce the risk of thermal overstress in nanoscale devices and open new 

frontiers in adaptive or self-optimizing nanoelectronics. 

 

6.6. Toward Unified Hybrid Methods and Interoperability 

Historically, multiscale modeling workflows patch together separate tools: a quantum 

solver for active regions, a semiclassical BTE solver for mid-range scattering, and a continuum 

solver for heat conduction in the substrate. Each submodel may use different numerical schemes 

and require bridging variables or boundary conditions at the interfaces [2, 11]. This 

fragmentation can introduce inconsistencies or numerical instabilities, particularly if the sub-

model codes are proprietary or not designed for straightforward coupling. 
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A unified PIML framework incorporates multiple levels of physical approximations in a 

single trainable environment. For instance, one module might handle ballistic phonon boundary 

scattering via partial distribution functions, another might approximate continuum conduction 

in the device interior, and yet another might incorporate quantum corrections near the contact 

region. Coupling occurs at shared boundaries and is enforced as part of a joint loss function that 

ensures flux continuity, phase coherence, or energy conservation [30],[38]. Open-data and 

open-source standards for domain decomposition would allow HPC codes to communicate 

seamlessly with specialized neural modules [32, 44]. 

Cross-Module Consistency: Different domains (e.g., ballistic vs. diffusive) can adopt 

separate coordinate systems or finite-element representations. Ensuring a stable handoff of 

boundary conditions is non-trivial. Operator-based networks that handle geometric 

transformations or mesh invariance may be useful. 

Scalability: Large-scale HPC resources are still required to train complex multimodule 

networks, especially if each submodule includes thousands of trainable parameters. Techniques, 

such as asynchronous parallel updates or distributed training across HPC clusters, may mitigate 

the overhead. 

Community Adoption: Achieving standardization for model definitions, boundary 

condition formats, and data handoffs is a social-technical challenge. Collaboration among 

academic research groups, software developers, and industry stakeholders is required. 

If realized, an interoperable PIML ecosystem would accelerate fundamental research on 

electron–phonon coupling, interface scattering, and ballistic–diffusive transitions. It also 

translates quickly into industrial design workflows, where reliability and performance are 

paramount. In the best-case scenario, researchers and engineers can mix and match specialized 

modules, such as a quantum tight-binding solver, phonon BTE surrogate, or continuum PDE 

solver, without rewriting entire codebases, ultimately speeding up both fundamental discoveries 

and practical device development. 

 

6.7 Advanced Optimization and Generalization with Neuroevolution 

Although improvements in network architecture and loss weighting are crucial, a more 

fundamental challenge lies in the optimization process itself. The limitations of gradient-based 

methods for navigating the complex loss landscapes of PINNs have motivated the development 

toward alternative strategies [52]. 

Physics-Informed Neuroevolution (PINE), which employs gradient-free, population-

based evolutionary algorithms (EAs) for PINN training, has emerged as a promising future 

direction. Unlike point-based gradient descent, EAs perform a global search that is less 

susceptible to trapping in poor local minima [52]. 

This paradigm offers several advantages. First, multi-objective EAs can naturally handle 

the competing terms in the PINN loss function (e.g., PDE residual vs. boundary conditions) 

without requiring heuristic weight tuning, instead identifying the entire Pareto front of the 

optimal trade-off solutions. Second, neuroevolution can be used for automated [52]. 

Neural Architecture Search (NAS) was used to discover bespoke network topologies 

and custom activation functions tailored to the physics of a specific transport problem. Finally, 

these methods show great promise for creating generalizable models, as discussed below [52]. 

 

7. Conclusion 

Modeling nanoscale transport has long presented a stark choice: the fidelity of first-

principles solvers at the cost of prohibitive computation or the speed of continuum models at 

the cost of physical accuracy. This review has charted the emergence of a new approach, 

Physics-Informed Machine Learning, that resolves this dilemma not with a better tool, but with 

a fundamentally transformed scientific workflow—a synergistic bridge that fuses the rigor of 
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physical law with the flexibility of machine learning. By embedding fundamental governing 

equations, such as the Boltzmann Transport Equation, directly into the training loss of a neural 

network, PIML fundamentally changes the modeling paradigm. This approach enables the 

fusion of sparse and noisy experimental data with physical laws, thereby allowing the creation 

of surrogate models that are both accurate and computationally efficient. As demonstrated, 

these methods are uniquely equipped to handle complex geometries, couple multiphysics 

phenomena across ballistic and diffusive regimes, and solve challenging inverse problems to 

uncover unknown material parameters from limited observations. 

However, the ultimate potential of PIML extends far beyond the acceleration of the 

existing simulations. This paradigm shift paves the way for true inverse design, a long-sought-

after goal in material science and device engineering. Instead of merely analyzing the transport 

properties of a given nanostructure, we can design novel materials and devices with precisely 

tailored thermal and electrical characteristics. Operator-learning networks, which learn the 

entire solution mapping for a family of PDEs, are a critical enabler of this vision, allowing for 

near-instantaneous parameter sweeps and design optimization that would be intractable with 

traditional solvers. This capability forms the bedrock for creating real-time digital twins of 

nanodevices, which could enable adaptive thermal management and on-the-fly performance 

optimization in next-generation electronics. 

Despite its transformative potential, the path to widespread adoption is not without 

obstacles. Significant challenges remain in handling the high dimensionality and stiffness of 

kinetic equations, ensuring robust uncertainty quantification for mission-critical applications, 

and developing models that can be generalized to new problems without costly retraining. 

Therefore, the grand challenge for the next decade will be to move beyond bespoke solutions 

and create unified, interoperable PIML frameworks capable of seamlessly integrating quantum, 

atomistic, and continuum physics within a single environment. Realizing this vision will 

demand unprecedented interdisciplinary collaboration among physicists, material scientists, 

computational experts, and engineers. By successfully uniting first-principles physics with 

scalable machine learning architectures, these integrated frameworks will be indispensable in 

engineering next-generation nanotechnologies. By fully realizing this integration, PIML will 

move beyond being a tool for analysis and become the primary engine for inverse design, 

enabling scientists and engineers to specify the desired transport properties and generate novel 

materials and device architectures that can achieve them. This is the ultimate goal of this new 

paradigm. 
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Моделювання явищ переносу в нанорозмірних системах є критично складним 

завданням, в якому класичні рівняння континууму виявляються неефективними, а 

високоточні обчислювальні системи є надто дорогими. Фізично-інформоване машинне 

навчання (PIML) стало революційним підходом до вирішення цієї дилеми шляхом 

синергетичного поєднання розрізнених експериментальних даних з основними законами 

транспортних моделей першого принципу. Цей огляд надає вичерпну інформацію про те, 

як PIML — особливо фізично-інформовані нейронні мережі (PINN), методи навчання 

операторів та підхід пожднання моделей різної точності — прискорює аналіз 

нанорозмірного транспорту від фононного транспорту на основі BTE до балістично-

дифузійного теплоперенесення та ефектів випромінювання в ближньому полі. Ми 

розглядаємо постійні проблеми з даними в дослідженнях наноматеріалів, включаючи 

шумні вимірювання та формулювання високорозмірних диференціальних рівнянь з 

частинними похідними (PDE), і представляємо передові стратегії, такі як декомпозиція 

доменів та гібридні механістичні методи машинного навчання (ML), щоб підвищити 

гнучкість та масштабованість цих нових підходів. Нарешті, ми окреслюємо поточні 

прогалини в цій галузі, від кількісної оцінки невизначеності до розробки цифрових 

двійників у реальному часі, та окреслюємо майбутні напрямки досліджень, спрямовані 

на об'єднання квантових симуляцій, експериментальної метрології та глибокого 

навчання. Вбудовуючи фізичні обмеження безпосередньо в робочий процес навчання, ці 

фізично обґрунтовані методи пропонують трансформаційний шлях для оптимізації 

нанорозмірного транспорту, та сприятиме вдосконаленню методів дослідження 

наноматеріалів. Додатково ми формуємо практичну «дорожню карту» інтеграції 

PIML з високопродуктивними та диференційовними солверами (BTE/MC/FEM) для 

швидких параметричних досліджень і калібрування інтерфейсної теплопровідності. 

Запропоновано базові метрики, протоколи валідації та бенчмарки (TDTR, SThM, 

грейтингові структури) для відтворюваного порівняння PINN/операторних моделей із 

першим-принципним еталоном. Окрему увагу приділено стратегіям UQ (баєсівські 
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PINN, ансамблі, багатовірогідні втрати), що є ключем до надійного впровадження 

цифрових двійників у реальному часі в нанотеплотехніці та наноелектроніці. 

 

Ключові слова: явища переносу нанорозмірних систем, наноматеріали, машинне 

навчання, фізико-інформовані нейронні мережі, глибоке навчання. 
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