NUCLEATION IN METASTABLE SOLID SOLUTION – STOCHASTIC KINETIC MEAN FIELD APPROACH VERSUS CLASSICAL NUCLEATION THEORY
Main Article Content
Abstract
The application of Stochastic Kinetic Mean Field approach to the kinetics of nucleation at the decomposition of supersaturated binary solid solution is presented. The dependencies of incubation time on the noise amplitude and the supersaturation are obtained. SKMF modeling demonstrates the validity of Classical Nucleation Theory. The logarithm of nucleation time is inversely proportional to the squared supersaturation. The logarithm of nucleation time is a linear function of the inverse squared noise amplitude.
Article Details
References
Beinke D., Oberdorfer C., Schmitz G. (2016). Towards an accurate volume reconstruction in atom probe tomography. Ultramicroscopy, 165, 34-41. Retrieved from https://doi.org/10.1016/j.ultramic.2016.03.008
Amouyal Y., Schmitz G. (2016). Atom probe tomography – A cornerstone in materials characterization. MRS Bulletin, 41(1), 13-18. Retrieved from https://doi.org/10.1557/mrs.2015.313
Park J. H., Schneider N. M., Grogan J. M., Reuter M. C., Bau H. H., Kodambaka S., Ross F. M. (2015). Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano letters, 15(8), 5314-5320. Retrieved from https://doi.org/10.1021/acs.nanolett.5b01677
Schmelzer J. W., Abyzov A. S. (2018). Crystallization of glass-forming melts: New answers to old questions. Journal of Non-Crystalline Solids, 501, 11-20. Retrieved from https://doi.org/10.1016/j.jnoncrysol.2017.11.047
Schmelzer J. W., Abyzov A. S., Möller J. (2004). Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions. The Journal of chemical physics, 121(14), 6900-6917. Retrieved from https://doi.org/10.1063/1.1786914
Soisson F., Martin G. (2000). Monte Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics. Physical Review B, 62(1), 203-214. Retrieved from https://doi.org/10.1103/PhysRevB.62.203
Erdélyi Z., Pasichnyy M., Bezpalchuk V., Tomán J. J., Gajdics B., Gusak A. M. (2016). Stochastic kinetic mean field model. Computer Physics Communications, 204, 31-37. Retrieved from https://doi.org/10.1016/j.cpc.2016.03.003
Bezpalchuk V., Abdank-Kozubski R., Pasichnyy M., Gusak A. (2018). Tracer Diffusion and Ordering in FCC Structures-Stochastic Kinetic Mean-Field Method vs. Kinetic Monte Carlo. Defect and Diffusion Forum, 383, 59-65. Retrieved from https://doi.org/10.4028/www.scientific.net/DDF.383.59
Bezpalchuk V. M., Kozubski R., Gusak A. M. (2017). Simulation of the tracer diffusion, bulk ordering, and surface reordering in fcc structures by kinetic mean-field method. Uspehi fiziki metallov (Progress in Physics of Metals), 18(3), 205-233. Retrieved from https://doi.org/10.15407/ufm.18.03.205
Wang Y., Banerjee D., Su C. C., Khachaturyan A. G. (1998). Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from fcc solid solution. Acta materialia, 46(9), 2983-3001. Retrieved from https://doi.org/10.1016/S1359-6454(98)00015-9
Gusak A., Zaporozhets T. (2018). Martin’s Kinetic Mean-Field Model Revisited – Frequency Noise Approach versus Monte Carlo. Metallofizika i Noveishie Tekhnologii (Metallophysics and Advanced Technologies), 40(11), 1415-1435. Retrieved from https://doi.org/10.15407/mfint.40.11.1415
Storozhuk N. V., Sopiga K. V., Gusak A. M. (2013). Mean-field and quasi-phase-field models of nucleation and phase competition in reactive diffusion. Philosophical Magazine, 93(16), 1999-2012. Retrieved from https://doi.org/10.1080/14786435.2012.746793
Rusanov A. I. (1967). Phase equilibria and surface phenomena. Leningrad: Khimiya (in Russ.).
Schmelzer J., Ulbricht H. (1987). Thermodynamics of finite systems and the kinetics of first-order phase transitions. Journal of Colloid and Interface Science, 117(2), 325-338. Retrieved from https://doi.org/10.1016/0021-9797(87)90390-0
Shirinyan A. S., Gusak A. M. (2004). Phase diagrams of decomposing nanoalloys. Philosophical Magazine, 84(6), 579-593. Retrieved from https://doi.org/10.1080/14786430310001635431.