Investigation the composition of the liquids by mass spectrometer MX- 7304A

Main Article Content

Ya. D. Korol
N. V. Storozhuk


This paper describes the original vacuum-thermal system with electronic control for sample preparation, which allows to investigate the composition of the liquid by the mass spectrometric method using a standard monopoly instrument MX-7304A. The construction of the mass spectrometer includes the ionization by gas electron impact, which enters through a mechanical dosing valve.
This fact restricts scope of application the instrument by gaseous samples. For investigation of condensed sample on MX-7304A there was constructed the system, which consists of a vacuum, thermal, measurement and control systems. In the paper there has been described in details the work of our new console. The displacement volume (with the investigated sample) is pumped to vacuum 10-1 mmHg, then it cut from the vacuum line by valve and then it heated by electric spiral through thermal fluid. During this process the vapor pressure over the sample is increasing and the pressure value is measuring by special sensor. In the case of achievement of the given value there works the electronic comparator and the scheme changs it regime to the proportionate regulation regime for maintenance of temperature of a sample and pressure of its vapors about 100 mmHg. Through the dosing valve lets off steams and get a mass spectrum of the sample by a standard for computerized MX-7304A procedure.
Dosing valve and spectrometer are heated up to a temperature of 100°C by arranged heaters. It is necessary to avoid the deposition of sample materials on the walls.
The results of the study of organic matter are showed in this paper. The resulting system is successfully used in the chemical specialties student’s laboratory practicum at the Educational center of physical and chemistry developments in the ChNU.

Article Details

Materials Physics


1. Mass spectrometer MX-7304A. Technical description and instruction manual. JSC «SELMI».
2. Baturin V. A., Eremin S. A. (2007). Determination of transmission monopoly ion mass spectrometers such as the MX 7304. Bulletin of SumSU (Vysnyk SumDU), 2, 127–132.
3. Baturin V. A., Eremin S. A., Surkov V. A. (2003). Software Features single-pole type mass spectrometers MH7304A. Bulletin of SumSU (Vysnyk SumDU), 54(8), 65–71.

4. Titov N. V., Shigin P. A. (2005). Modernization of control and registration of the monopoly of the mass spectrometer MX 7304. Scientific Session of Moscow Engineering Physics Institute (Nauchnaya sessiya MIFI), 4, 115.
5. Zavilopulo A. N., Shpenik O. B., Snegyrskiy A. V., Chipev F. F., Vukstich V. S. (2005). The threshold ionization of sulfur hexafluoride molecules by electron impact. Technical Physics Letters (Pisma v ZhTF), 31(18), 44–49.
6. Azhazha V. M., Vyugov P. N., Lavrinenko S. D., Pylypenko N. N. (2001). Using a mass spectrometer to control the composition of the ingots in electron beam melting of metals. Factory Laboratory (Zavodskaya laboratorya), 12, 37–43.
7. Azhazha V. M., Vyugov P. N., Lavrinenko S. D., Pylypenko N. N. (2006). Vacuum conditions and EBL zirconium. Problems of Atomic Science and Technology (Voprosy atomnoy nauki i tehnyky), 4, 144–152.
8. Nikitenkov N. N., Horuzhy V. D. (2007). The research output of the hydrogen isotopes of gas thermal methods. Guidelines for laboratory work. Tomsk: Tomsk Polytechnic University (in Rus.).
9. Baturin V. A., Eremin S. A., Pustovoitov S. A. (2007). Secondary-ion mass spectrometer on the basis of high-dose ion implanter. Technical Physics Journal (ZhTF), 6, 93–98.
10. Sevastyanov V. S., Kadyk A. A., Zhuev B. K. (2000). The use of mass spectrometry for the determination of C-O-H-T components in the glass composition of the core. Bulletin of DGGGMS RAS (Vestnyk ОGGGGN RAN), 2 (12), 30–36.
11. Educational-methodical complex of the Department "Physical Electronics" for physicists Manual for laboratory work. (2008). Ural State University named after A. M. Gorky, 70–83.
12. Biletskyy V.S. (2004). Small mining Encyclopedia: 3 toms. Donets'k: Donbass, ISBN 966-7804-14-3 (in Ukr.).
13. Vynarskyy V. A. et al. (2013). Mass spectrometry and gas chromatography-mass spectral analysis: a tutorial. M.: RChTU (in Rus.).
14. Yashin Y. S. (2014). Analysis of silyl derivatives of methylphosphonic acid esters by the method of gas chromatography/mass spectrometry with atmospheric pressure photoionization. Mass-spektrometria, 11 (2), 118–122.
15. Karatasso J. O. et al. (2006) Quantitative analysis of drugs in the blood plasma using electrospray ionization mass spectrometry without chromatographic separation. Pharmaceutical Chemistry Journal (Himiko farmatsevticheskiy zhurnal), 41(3), 45–48.
16. Pedersen J. (1995) Nuclease Serratia marcescens. Comparing native and recombinant nucleases using electrospray mass spectrometry. Bioorganic chemistry (Bioorganicheskaya himiya), 21(5), 330–335.
17. Makarevich A. M., Gomel B. G., Kuzmina N. P. (2007). Electrospray mass spectr of aqueous solutions of 4f-3d heterometal components. Journal of Inorganic Chemistry (Zhurnal neorganicheskoy himii), 52(11), 1885 1891.
18. Andreev A. D., Yelistratov A. A., Gall L. N. (2006). Analytical model of ion transport in the interface area ESI ion source pressure (electrospray). Scientific Instrumentation (Nauchnoe priborostroenie), 16(2), 73–77.
19. Study design and determination of metrological characteristics of a mass spectrometer MX-7304A. Lab. (2008) Sumy: Sumy State University (in Ukr.).

20. Morachevskyy A. G. (1989) Liquid equilibrium Thermodynamics. L.: Himiya (in Rus.).
21. Stell D. R. (1949). Tables vapor pressure of individual substances. М.: Izdatelstvo inostrannoy literaturyi (in Rus.).
22. Peyton A. J., Walsh B. (1994). Analog electronics with operational amplifiers. М.: BINOM (in Rus.).