GENERALIZATION OF THE SKMF METHOD ON THE SOLIDIFICATION OF ALLOYS
Main Article Content
Abstract
We developed the generalized stochastic kinetic mean-field method (GSKMF) and applied it to simple cases of isothermal uniform and non-uniform crystallization and non-isothermal non-uniform crystallization. The simulation results were compared with experimental data and molecular dynamics simulation data. After this, we chose the model parameters that give values of the crystallization front velocity close to the experimental data. The possibility of eutectic crystallization by spinodal decomposition of a transient unstable solid solution was studied.
Conclusions: The developed GSKMF method was tested on cases of homogeneous and heterogeneous crystallization of a single-component melt at a constant temperature, as well as taking into account the heat released during crystallization. An attempt was made to apply the developed method to the eutectic crystallization of a binary melt, and the possibility of the existence of an alternative mechanism of eutectic crystallization (through the spinodal decomposition of a transient unstable solid solution) was found.
Article Details
References
Kryshtal, A., Bogatyrenko, S., & Ferreira, P. (2022). Metal-induced crystallization of amorphous semiconductor films: Nucleation phenomena in Ag-Ge films. Applied Surface Science, 606, 154873. Retrieved from https://doi.org/10.1016/j.apsusc.2022.154873
Gusak, A. M. (1990). Peculiarities of nucleation in the field of a concentration gradient of the binary-system. UKRAINSKII FIZICHESKII ZHURNAL, 35(5), 725-729.
Desre, P. J., & Yavari, A. R. (1990). Suppression of crystal nucleation in amorphous layers with sharp concentration gradients. Physical review letters, 64(13), 1533. Retrieved from https://doi.org/10.1103/PhysRevLett.64.1533
P. J. Desré, “Effect of sharp concentration gradients on the stability of a two- component amorphous layer obtained by solid state reaction,” Acta Metall. Mater. 39(10), 2309–2315 (1991). Retrieved from https://doi.org/10.1016/0956-7151(91)90013-Q
Gusak, A. M., & Nazarov, A. V. (1992). On the description of solid state amorphizing reactions. Journal of Physics: Condensed Matter, 4(20), 4753. Retrieved from https://doi.org/10.1088/0953-8984/4/20/002
Hodaj, F., Gusak, A. M., & Desre, P. J. (1998). Effect of sharp concentration gradients on the nucleation of intermetallics in disordered solids: influence of the embryo shape. Philosophical Magazine A, 77(6), 1471-1479. Retrieved from https://doi.org/10.1080/01418619808214264
Gusak, A. M., Hodaj, F., & Bogatyrev, A. O. (2001). Kinetics of nucleation in the concentration gradient. Journal of physics: Condensed matter, 13(12), 2767. Retrieved from https://doi.org/10.1088/0953-8984/13/12/302
Hodaj, F., & Gusak, A. M. (2004). Suppression of intermediate phase nucleation in binary couples with metastable solubility. Acta materialia, 52(14), 4305-4315. Retrieved from https://doi.org/10.1016/j.actamat.2004.05.047
Stochastic Kinetic Mean Field model [Електронний ресурс] / [Z. ERDÉLYI, M. PASICHNYY, V. BEZPALCHUK та ін.] Retrieved from http://skmf.eu/
Rátkai, L., Tóth, G. I., Környei, L., Pusztai, T., & Gránásy, L. (2017). Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy. Journal of Materials Science, 52, 5544-5558. Retrieved from https://doi.org/10.1007/s10853-017-0853-8
Gránásy, L., Tóth, G. I., Warren, J. A., Podmaniczky, F., Tegze, G., Rátkai, L., & Pusztai, T. (2019). Phase-field modeling of crystal nucleation in undercooled liquids–A review. Progress in Materials Science, 106, 100569. Retrieved from https://doi.org/10.1016/j.pmatsci.2019.05.002
Wu, W., Montiel, D., Guyer, J. E., Voorhees, P. W., Warren, J. A., Wheeler, D., ... & Heinonen, O. G. (2021). Phase field benchmark problems for nucleation. Computational Materials Science, 193, 110371. Retrieved from https://doi.org/10.1016/j.commatsci.2021.110371
Gusak, A., & Titova, A. (2023). Eutectic crystallization and melting in sharp concentration gradients. The Journal of Chemical Physics, 158(16). Retrieved from https://pubs.aip.org/aip/jcp/article/158/16/164701/2886908
Elder, K., Gould, H., & Tobochnik, J. (1993). Langevin simulations of nonequilibrium phenomena. Computers in Physics, 7(1), 27-33. Retrieved from https://doi.org/10.1063/1.4823138
Hoyt, J. J., Sadigh, B., Asta, M., & Foiles, S. M. (1999). Kinetic phase field parameters for the Cu–Ni system derived from atomistic computations. Acta materialia, 47(11), 3181-3187. Retrieved from https://doi.org/10.1016/S1359-6454(99)00189-5
Arblaster, J. W. (2015). Thermodynamic properties of copper. Journal of Phase Equilibria and Diffusion, 36, 422-444. Retrieved from https://doi.org/10.1007/s11669-015-0399-x
Arblaster, J. W. (2015). Thermodynamic properties of silver. Journal of Phase Equilibria and Diffusion, 36, 573-591. Retrieved from https://doi.org/10.1007/s11669-015-0411-5
Kodentsov, A. A., Bastin, G. F., & Van Loo, F. J. J. (2001). The diffusion couple technique in phase diagram determination. Journal of alloys and compounds, 320(2), 207-217. Retrieved from https://doi.org/10.1016/S0925-8388(00)01487-0.
Pasichnyy, M. O., Schmitz, G., Gusak, A. M., & Vovk, V. (2005). Application of the critical gradient concept to the nucleation of the first-product phase in Co∕ Al thin films. Physical Review B, 72(1), 014118. Retrieved from https://doi.org/10.1103/PhysRevB.72.014118
Schmitz, G., Ene, C., Lang, C., & Vovk, V. (2006). Atom probe tomography: Studying reactions on top of the tip. Advances in Science and Technology, 46, 126-135. Retrieved from https://doi.org/10.4028/www.scientific.net/AST.46.126