The study of structural state of fullerenes C60 in the process of ball-milling treatment by reverse Monte-Carlo method

Main Article Content

О. Д. Рудь
І. М. Кір'ян
Р. М. Ніконова
В. І. Ладьянов
А. М. Лахник

Abstract

The structural changes that occur in fullerenes C60 at mechanical activation processing are studied. Based on model atomic configurations obtained by reverse Monte Carlo method, the quantitative characteristics describing the structure of fullerite C60 in the initial state and after ball-milling are established.
The bond angles distributions for the reconstructed atomic configurations in fullerenes C60 in the initial state and ball-milled ones were calculated. It was shown that it is characterized for the pristine fullerenes C60 by a broad maximum, which decomposes into two components with the positions of ~ 110 and ~ 117°. It stays in place after ball-milling treatment for 1 hour, but a low intensive broad asymmetric maximum with position of ~60° appears, what indicates displacements of carbon atoms from equilibrium positions in the structure of molecules C60. Further increase of milling time results in disappearance of maxima characteristic of structure of the molecule. The distribution takes the form typical for carbon materials in the amorphous state.
Statistical analysis of atomic rings in the structure of ball-milled fullerenes was performed using S. King criterion. The pristine molecule of C60 is characterized by 5- and 6-fold rings. At the initial stage of ball-milling treatment (1-3 hours) the molecules partially decomposes into individual atoms, what results in appear of essential amount of 3-fold rings with simultaneous decrease of the percentage of 5- and 6-fold ones. After 14 hours of the processing, 3-fold rings are dominated in the carbon material produced, what indicates full amorphization of fullerenes C60. Using the method of radial distribution function, it is found that amorphous carbon possesses graphite-like type of short-range order.

Article Details

Section
Computer Modelling in Physics
Author Biographies

О. Д. Рудь

Кандидат фіз.-мат. наук, старший науковий співробітник, Інститут металофізики ім. Г.В. Курдюмова НАН України, бульв. Акад. Вернадського, 36, 03142, Київ, Україна.

І. М. Кір'ян

Кандидат фіз.-мат. наук, молодший науковий співробітник, Інститут металофізики ім. Г.В. Курдюмова НАН України, бульв. Акад. Вернадського, 36, 03142, Київ, Україна.

Р. М. Ніконова

Кандидат технічних наук, старший науковий співробітник, Фізико-технічний інститут УрВ РАН, м. Іжевськ, вул. Кірова, 132, 426000, Росія.

В. І. Ладьянов

Доктор фіз.-мат. наук, директор Фізико-технічного інституту УрВ РАН, Фізико-технічний інститут УрВ РАН, м. Іжевськ, вул. Кірова, 132, 426000, Росія.

А. М. Лахник

Кандидат фіз.-мат. наук, старший науковий співробітник, Інститут металофізики ім. Г.В. Курдюмова НАН України, бульв. Акад. Вернадського, 36, 03142, Київ, Україна.

References

1. Tochil’nikov D. G. Influence of C60-containing additives in lubricant oil on the optimization of wear processes in the boundary friction of metals / D. G. Tochil’nikov, B. M. Ginzburg // Technical Physics. – 1999. – Vol. 44. – Is. 6. – P. 700–703.
2. Ginzburg B. M. Effect of C60 fullerene, fullerene-containing soot, and other carbon materials on the sliding edge friction of metals / B. M. Ginzburg, M. V. Baidakova, O. F. Kireenko [et. al.] // Technical Physics . – 2000. – Vol. 45. – Is. 12. – P. 1595–1603.
3. Lad’yanov V. I. Deformation-induced changes in the structure of fullerites C60/70 during their mechanical activation / V. I. Lad’yanov, R. M. Nikonova, N. S. Larionova [et. al.] // Physics of the Solid State. – 2013. – Vol. 55. – Is. 6. – P. 1319–1324.
4. Глазков В. П. Нейтронодифракционные исследования механоактивированных фуллеренов / В. П. Глазков, С. С. Агафонов, И. Ф. Кокин [и др.] // Наносистеми, наноматеріали, нанотехнології. – 2010. – Т. 8. – № 2. – С. 439–444.
5. Rud A. D. Synthesis of carbon nanomaterials using high-voltage electric discharge techniques / A. D. Rud, N. I. Kuskova, L. I. Ivaschuk, L. Z. Boguslavskii, A. E. Perekos // Nanomaterials / ed. by M. M. Rahman. // InTech. – Rijeka, 2011 – Chap. 5. – P. 99–116.
6. Алексеев А. Д. Атомная структура природных углей / А. Д. Алексеев, Г. М. Зелинская, А. Г. Ильинский [и др.] // Физика и техника высоких давлений. – 2008. – Т. 18, № 3. – С. 35–52.
7. RMC-Forum. – Access : http://www.rmc-forum.org/Downloads
8. Keen D. A. Reverse Monte Carlo modeling of crystalline disorder / D. A. Keen, M. G . Tucker, M. T. Dove //. J Phys : Condens Matter . – 2005. – Vol. 17. – P. S15–S22.
9. Mallegård A. Recent developments of the RMCPOW method for structuralmodeling / A. Mallegård, R. L. McGreevy // Chem. Phys. – 2000. – Vol. 261. – № 1–2. – P. 267–274.
10. Cheng Y. Q. Atomic-level structure and structure–property relationship in metallic glasses / Y. Q. Cheng // Progress in materials science. – 2011. – № 56. – P. 379–473.
11. Rud A. D. Quantitative analysis of the local atomic structure in disordered carbon / A. D. Rud, I. M. Kiryan // J Non-Cryst Solids. – 2014. – № 38. – P. 1–7.
12. Wang C.C. Short-to-medium range order of Al–Mg metallic glasses studied by molecular dynamics simulations / C. C. Wang, C. H. Wong // Journal of alloys and compounds. – 2011. – Vol. 509. – P. 10222–10229.
13. Roux S. Le ISAACS – interactive structure analysis of amorphous and crystalline systems / S. Le Roux, V. Petkov // J. Appl. Cryst. – 2010. – № 43. – Р. 181–185.