ON PROPAGATION OF INITIAL CORRELATIONS IN ACTIVE SOFT MATTER

Main Article Content

V. I. Gerasimenko

Abstract

For collisional dynamics modeling the collective behavior of complex systems of mathema-tical biology, the process of propagation of initial correlations is described. The developed approach is based on the construction of a mean field limit for a solution of the Cauchy problem of the nonlinear BBGKY hierarchy for marginal correlation functions.

Article Details

Section
Materials Physics
Author Biography

V. I. Gerasimenko, Інститут математики НАНУ

провідний науковий співробітник

References

Bogolyubov, N.N. (1946). Problems of dynamic theory in statistical physics. Moscow: Gostekhizdat, 123p. (in Rus.)

Gurov, K.P. (1966). Foundations of the kinetic theory. Method of N.N. Bogolyubov. Moscow: Nauka, 352p. (in Rus.)

Cercignani, C., Gerasimenko, V., Petrina, D. (2012). Many-particle dynamics and kinetic equations. The Netherlands: Springer, 252p..

Villani, C. (2002). A review of mathematical topics in collisional kinetic theory. In: Handbook of mathematical fluid dynamics, Elsevier, 1, 71-305.

Lachowicz, M. (2008). Links between microscopic and macroscopic descriptions. In: Multiscale problems in the life sciences. From microscopic to macroscopic. Springer.

Lecture Notes in Math., 1940, 201-278.

Bellouquid, A., Delitala, M. (2006). Mathematical modeling of complex biological systems: a kinetic theory approach. Boston: Birkhäuser, 200p.

Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R. Aditi. (2013). Hydrodynamics of soft active matter. Rev. Mod. Phys., 85, 1143-1189.

Menzel, A.M. (2015). Tuned, driven, and active soft matter. Phys. Rep., 554, (3), 1-45. 9. Vicsek, T., Zafeiris, A. (2012). Collective motion. Physics Reports, 517, 71-140.

Bellomo, N., Dogbé, C. (2011). On the modeling of trafic and crowds: a survey of models, speculations and perspectives. SIAM Review, 53, (3), 409-463.

Carlen, E., Degond, P., Wennberg, B. (2013). Kinetic limits for pair-interaction driven master equations and biological swarm models. Mathematical Models and Methods in Applied Sciences, 23, 1339-1376.

Lachowicz, M. (2011). Individually-based Markov processes modeling nonlinear systems in mathematical biology. Nonlinear Analysis: Real World Applications, 12, (4), 2396-2407.

Banasiak, J., Lachowicz, M. (2014). Methods of small parameter in mathematical biology. Boston: Birkhäuser, 296p.

Prigogine, I. (1962). Nonequilibrium Statistical Mechanics. New York: John Wiley & Sons Inc., 319p.

Gerasimenko V.I., Polishchuk D.O. (2011). Dynamics of correlations of Bose and Fermi particles. Math. Meth. Appl. Sci., 34, (1), 76-93.

Gerasimenko, V.I. (2012). Hierarchies of quantum evolution equations and dynamics of many-particle correlations. In: Statistical Mechanics and Random Walks: Principles, Processes and Applications. N.Y.: Nova Science Publ., Inc., 233-288.

Gerasimenko, V.I. (2017). The evolution of correlation operators of large particle quantum systems. Methods Funct. Anal. Topology, 23, (2), 123-132.

Golse, F. (2016). On the dynamics of large particle systems in the mean field limit. In: Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity. Springer. Lect. Notes Appl. Math. Mech., 3, 1-144.

Gerasimenko, V.I., Fedchun, Yu.Yu. (2013). On kinetic models for the evolution of many-entity systems in mathematical biology. J. Coupled Syst. Multiscale Dyn., 1, (2), 273-279.

Gerasimenko, V.I., Fedchun, Yu.Yu. (2014). Kinetic equations of soft active matter. Reports of NAS of Ukraine, (5), 11-18.

Gerasimenko, V.I., Fedchun, Yu.Yu. (2015). On semigroups of large particle systems and their scaling asymptotic behavior. In: Semigroups of Operators ─ Theory and Applications. Series: Springer Proceedings in Mathematics and Statistics, Springer, 113, 165-182.