MESOSCOPIC MODEL OF DIFFUSION INTERACTION AND PHASE GROWTH IN Cu-Sn SYSTEM

Main Article Content

S. I. Derevianko
Yu. O. Lyashenko

Abstract

The model of interdiffusion in system Cu - Cu 8 at.% Sn depending on the form of interface was made in this work. The model sample is a diffusion pair of Cu and Cu 8 at.% Sn, which was thermally annealed at the temperature of 741°C. In this simulation was used the kinetic-thermodynamic approach, which included the calculation of diffusion flux, chemical potentials and Onzager coefficients for the Cu-Sn system phases Calculations of Gibbs potentials for pure components and a solid solution of the Cu-Sn system were carried out using CALPHAD technology.Simulation of diffusion evolution in the sample allows us to calculate the concentration profiles, the positions of the interphase boundaries, the width of the diffusion zone, to estimate the change in the roughness of the interphase boundary during the diffusion reaction. The following roughness parameters are calculated: arithmetical mean deviation of the assessed profile, root mean squared, maximum valley depth, maximum peak height, maximum height of the profile, the skewness and kurtosis.

We investigated influence diffusion interaction on the change of roughness of the interphase boundary in model samples. As the size of the projections increases, namely maximum valley depth and maximum peak height, the thickness of the resulting diffusion zone increases.

The diffusion annealing smoothes out the interphase limits and reduces their roughness (sample 2-4).

In the future we plan to develop a two-dimensional model of diffusion interaction in the Cu-Sn pair in the presence of intermediate phase Cu-Sn in diffusion zone and the presence of initial interfaces with different roughness and structure.

Article Details

Section
Materials Physics
Author Biographies

S. I. Derevianko, The Bohdan Khmelnytsky National University of Cherkasy

PhD student of the Department Physics, Educational-
Scientific Institute of Informational and Eduational Technologies

Yu. O. Lyashenko, The Bohdan Khmelnytsky National University of Cherkasy

doctor of physical and mathematical sciences, professor, Educational-Scientific Institute of Informational and Eduational Technologie

References

Tu K. N. (2010). Electronic thin-film reliability. Cambridge University Press. DOI:10.1017/CBO9780511777691

Tu K. N. (2007). Solder joint technology. New York: Springer. – DOI:10,1007 / 978-0-387-38892-2

Morozovych V. V., Honda A. R., Lyashenko Yu. O., Korol Ya. D., Liashenko O. Yu., Cserhati С., Gusak A. M. (2018). Influence of copper pretreatment on the phase and pore formations in the solid phase reactions of copper with tin. Metallophysics and Advanced Technologies (Metallofizika i Noveishie Tekhnologii), 40(12), 1649-1673. – DOI:10.15407/mfint.40.12.1649

Nіkolenko Yu. V., Diduk V. A., Korol Ya. K., Lyashenko Y. O. (2016). Development and application of the hardware and software complex in the board by the process of electrolytic

deposition of copper in the mode of stochastic oscillations. Visnyk Cherkaskoho Universytetu. Seriia «Fizyko-Matematychni Nauky» (Bulletin of Cherkasy University. Series "Physics and

Mathematics"), 1, 27-29. – Retrieved from http://phys-

ejournal.cdu.edu.ua/article/view/1372/1396

Tiutenko V. M., Morozovych V. V., Diduk V. A., Kolinko S., Lyashenko Y. O. (2017). The influence of SMAT processing on microstructure of copper films electroplated in steady-state,

reversed impulse and stochastic regimes. Visnyk Cherkaskoho Universytetu. Seriia «Fizyko-Matematychni Nauky» (Cherkasy University Bulletin: Physical and Mathematical Sciences), 1,

-78. – Retrieved from http://phys-ejournal.cdu.edu.ua/article/view/2334/2406.

Lyashenko Yu O., Mukovoz T. P. (1994). Computer simulation of the formation and growth of two-phase zones with isothermal diffusion in triple systems. Metallofiz. Noveishie Tekhnol., 16,

-27. (in Russ.). – DOI:10.15407/mfint.40.12.1649

Lyashenko Yu O. (2003). Model of growth of an intermediate phase in a thin-film Cu-Sn system. Metallophysics and Advanced Technologies (Metallofizika i Noveishie Tekhnologii), 25(2), 159-170. – Retrieved from https://mfint.imp.kiev.ua/article/v40/i12/MFiNT.40.1649.pdf

Dinsdale A. T. (1991). SGTE data for pure elements. CALPHAD, 15(4), 317-425. – Retrieved from http://resource.npl.co.uk/mtdata/SGTEelementdata.pdf

Shim J.-H., Oh Ch.-S., Lee B.-J., Lee D. N. (1996). Thermodynamic assessment of the Cu-Sn system. Z. Metallkd, 87(3), 205-212. – Retrieved from https://www.researchgate.net/publication/279898348_Thermodynamic_assessment_of_the_Cu-Sn_system

Li D, Franke P., Fьrtauer S., Cupid D., Flandorfer H. (2013). The Cu-Sn phase diagram part II: New thermodynamic assessment. Intermetallics, 34, 148-158. –

DOI:10.1016/j.intermet.2012.10.010

Fьrtauer S, Cupid D., Flandorfer H. (2013). The Cu-Sn phase diagram, Part I: New experimental results. Intermetallics, 34, 142-147. – Retrieved from: https://www.researchgate.net/publication/257426435_The_Cu-Sn_phase_diagram_Part_I_New_experimental_results

Santra S, Paul A. (2012). Vacancy wind effect on interdiffusion in a dilute Cu(Sn) solid solution. Philosophical Magazine Letters, 92(8), 373-383. – DOI: 10.1080/09500839.2012.682169

Hoshimo K., Iijima Y., Hirano K. (1980). Interdiffusion and Kirkendall effect in Cu-Sn alloys Materials Transactions JIM, 21(10), 674-682. – DOI: 10.2320/matertrans1960.21.674