Main Article Content

A. M. Gusak
V. M. Pasichna


Competitive nucleation of an intermediate phase in a sharp concentration gradient proceeds usually at the initial stages of the solid-state reaction between materials. Theory of nucleation at such conditions has almost 40 years of history briefly reviewed and discussed in the present paper. This theoretical treatment is based on two basic ideas: (1) kinetic suppression of the emerging embryos/nuclei by the fast-growing neighboring phases, (2) thermodynamic suppression of nucleation by sharp concentration gradients. Here some new theoretical and simulation results in this field are presented, as well as their experimental verifications.

Article Details

Materials Physics
Author Biographies

A. M. Gusak, The Bohdan Khmelnytsky National University of Cherkasy, Cherkasy, Ukraine

Doctor of physical and mathematical sciences, professor, Honored Worker of Science and Technology of Ukraine, Leading Researcher, Laboratory of Mathematical Physics, Department of Physics of Educational-Scientific Institute of Informational and Eduational Technologies

V. M. Pasichna, The Bohdan Khmelnytsky National University of Cherkasy, Cherkasy, Ukraine

Master student of physics


Gusak, A. M., Zaporozhets, T. V., Lyashenko, Y. O., Kornienko, S. V., Pasichnyy, M. O., & Shirinyan, A. S. (2010). Diffusion-controlled solid state reactions: in alloys, thin-films, and nanosystems. John Wiley & Sons. Retrieved from ISBN 978-3-527-408849

Tu, K. N., & Gusak, A. M. (2014). Kinetics in nanoscale materials (Vol. 2). New York: Wiley. Retrieved from ISBN 9780470881408

Lu, K. C., Tu, K. N., Wu, W. W., Chen, L. J., Yoo, B. Y., & Myung, N. V. (2007). Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-Ni Si∕ Si. Applied Physics Letters, 90(25), 253111. Retrieved from

Kovalchuk, A. O., Gusak, A. M., & Tu, K. N. (2010). Theory of repeating nucleation in point contact reactions between nanowires. Nano letters, 10(12), 4799-4806. Retrieved from

Ostwald W. (1897). Studien über die Bildung und Umwandlung fester Körper, Zeitschrift für physikalische Chemie, 22(1), 289-330. Retrieved from

Schmelzer J. W. P., Abyzov A. S. (2017). How do crystals nucleate and grow: Ostwald’s rule of stages and beyond. Thermal Physics and Thermal Analysis, 195-211. Retrieved from

Gusak A. M., Gurov K. P. (1982). The Physics of Metals and Metallography 53(5), 842.

Gusak A. M., Gurov K. P. (1990). Ob incubatsionnom periode obrazovaniya promezhutochnykh faz (On the incubation period of intermediate phases formation). Izvestiya of Acad. Sciences USSR. Metals (1), 163.

Gusak, A. M., Nazarov, A. V. (1992). On the description of solid state amorphizing reactions. Journal of Physics: Condensed Matter, 4(20), 4753. Retrieved from

Gusak K. P., Gurov K. P. (1992). Peculiarities of Intermediate Phase Nucleation in the Process of Chemical Diffusion. Solid State Phenomena, 23-24, 117-122. Retrieved from

Danielewski M., Wierzba B., Gusak A., Pawełkiewicz M., Janczak-Rusch J. (2011). Chemical interdiffusion in binary systems; interface barriers and phase competition. Journal of Applied Physics, 110(12), 123705. Retrieved from

Gusak, A. M., Lucenko, G. V. (1998). Interdiffusion and solid state reactions in powder mixtures—one more model. Acta materialia, 46(10), 3343-3353. Retrieved from

Wagner C. (1969). The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems. Acta Metallurgica, 17(2), 99-107. Retrieved from

Van Loo F. J. J. (1990). Multiphase diffusion in binary and ternary solid-state systems. Progress in Solid State Chemistry, 20(1), 47-99. Retrieved from

Gusak A., Zaporozhets T., Storozhuk N. (2019). Phase competition in solid-state reactive diffusion revisited — Stochastic kinetic mean-field approach. The Journal of chemical physics, 150(17), 174109. Retrieved from

Gusak A. M., Storozhuk N. (2019). Two remarks on Wagner integrated diffusion coefficient, Metallofiz. Noveishie Tekhnol, 41(5), 583-593. Retrieved from

Gusak A. M. (1990). Osobennosti zarodysheobrazovaniya v pole gradienta koncentratsiy binarnoy systemy (Peculiarities of nucleation in the field of concentration gradient of the binary system). Ukrainian Journal of Physics, 35(5), 725-729.

Gusak A. M., Dubiy O. V., Kornienko S. V. (1991). Zarodysheobrazovaniye promezhutochnykh faz pri vzaimnoy diffuzii (Nucleation of intermediate phases upon interdiffusion). Ukrainian Journal of Physics, 36, 286-291.

Desre P. J., Yavari, A. R. (1990). Suppression of crystal nucleation in amorphous layers with sharp concentration gradients. Physical Review Letters, 64(13), 1533. Retrieved from

Desre P. J. (1991). Effect of sharp concentration gradients on the stability of a twocomponent amorphous layer obtained by solid state reaction. Acta metallurgica et materialiсa, 39(10), 2309-2315. Retrieved from

Hodaj F., Gusak A. M., Desre P. J. (1998). Effect of sharp concentration gradients on the nucleation of intermetallics in disordered solids: influence of the embryo shape. Philosophical Magazine A, 77(6), 1471-1479. Retrieved from

Gusak A. M., Hodaj F., Bogatyrev A. O. (2001). Kinetics of nucleation in the concentration gradient. Journal of Physics: Condensed Matter, 13(12), 2767. Retrieved from

Hodaj F., Gusak, A. M. (2004). Suppression of intermediate phase nucleation in binary couples with metastable solubility. Acta materialia, 52(14), 4305-4315. Retrieved from

Gusak A.M., F. Hodaj (2005). "Nucleation in a Concentration Gradient." Chapter 10 in "Nucleation Theory and Applications", ed. J. W. P. Schmelzer, Wiley VCH: 375-417. Retrieved from

Gusak A. M., Hodaj F., Schmitz G. (2011). Flux-driven nucleation at interfaces during reactive diffusion. Philosophical Magazine Letters, 91(9), 610-620. Retrieved from

Chou Y. C., Wu W. W., Cheng S. L., Yoo B. Y., Myung N., Chen L. J., & Tu K. N. (2008). In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si. Nano letters, 8(8), 2194-2199. Retrieved from

Wu W. W., Lu K. C., Wang C. W., Hsieh H. Y., Chen S. Y., Chou Y. C., Yu S.Y., Chen L.J., Tu K. N. (2010). Growth of multiple metal/semiconductor nano heterostructures through point and line contact reactions. Nano letters, 10(10), 3984-3989. Retrieved from

Gusak A. M., Yarmolenko M. V. (1993). A simple way of describing the diffusion phase growth in cylindrical and spherical samples. Journal of applied physics, 73(10), 48814884. Retrieved from

Kovalchuk A. O., Gusak A. M. (2009). Reactions in nanowires upon point contact in metal-silicon system. Nanosystems, Nanomaterials, Nanotechnologies, 7(4), 1163—1175. Retrieved from

Gusak, A. M., Tu, K. N. (2002). Kinetic theory of flux-driven ripening. Physical Review B, 66(11), 115403. Retrieved from

Liashenko O. Y., Hodaj F. (2015). Differences in the interfacial reaction between Cu substrate and metastable supercooled liquid Sn–Cu solder or solid Sn–Cu solder at 222° C: Experimental results versus theoretical model calculations. Acta Materialia, 99, 106118. Retrieved from

Hodaj F., Liashenko O., Gusak A. M. (2014). Cu3Sn suppression criterion for solid copper/molten tin reaction. Philosophical Magazine Letters, 94(4), 217-224. Retrieved from

Soisson F., Martin G. (2000). Monte Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics. Physical Review B, 62(1), 203. Retrieved from

Erdélyi Z., Pasichnyy M., Bezpalchuk V., Tomán J. J., Gajdics B., Gusak A. M. (2016). Stochastic kinetic mean field model. Computer Physics Communications, 204, 31-37. Retrieved from

Bezpalchuk V. M., Kozubski, A. M, Gusak A. M. (2017). Simulation of the tracer diffusion, bulk ordering, and surface reordering in fcc structures by kinetic mean-field. Metal physics advances, 18(3), 205-233. Retrieved from

Bezpalchuk V. Abdank-Kozubski R, Pasichnyy M, Gusak A. (2018). Tracer Diffusion and Ordering in FCC Structures-Stochastic Kinetic Mean-Field Method vs. Kinetic Monte Carlo. In Defect and Diffusion. Trans Tech Publications, 383, 59-65. Retrieved from

Wong G. C., Johnson W. L., Cotts E. J. (1990). Solid state amorphization reactions in deformed Ni-Zr multilayered composites. Journal of Materials Research, 5(3), 488-497. Retrieved from

Highmore R.J., Somekh R.E., Evetts J.E., Greer A.L. (1988). Differential scanning calorimetry studies of solid state amorphization in multilayer NiZr, J. Less-Common Met., 140, 353–360. Retrieved from

Gusak A.M., Nazarov A.V. (1990). K opisaniyu tverdofaznykh reaktsii diffuzionnoi amorfizatsii (Description of the Kinetics of Solid-Phase Diffusion Amorphizing Reactions), Metallofizika, 12(2), 48–52.

Perepezko J. H., Park J. S., Landry K., Sieber H., da Silva Bassani M. H., Edelstein A. S. (1997). Initial phase formation during interdiffusion. MRS Online Proceedings Library Archive, 481. Retrieved from

Perepezko J. H., da Silva Bassani M. H., Park J. S., Edelstein A. S., Everett R. K. (1995). Diffusional reactions in composite synthesis. Materials Science and Engineering: A, 195, 1-11. Retrieved from

Pasichnyy M. O., Schmitz G., Gusak A. M., Vovk V. (2005). Application of the critical gradient concept to the nucleation of the first-product phase in Co∕ Al thin films. Physical Review B, 72(1), 014118. Retrieved from

Ibrahim M., Balogh Z., Stender P., Schlesiger R., Greiwe G. H., Schmitz G., Parditka B., Langer G.A., Czik A., Erdélyi Z. (2014). On the influence of the stacking sequence in the nucleation of Cu3Si: Experiment and the testing of nucleation models. Acta Materialia, 76, 306-313. Retrieved from

Parditka B., Toman J., Cserhati C., Jánosfalvi Z., Csik A., Zizak I., Feyerherm R., Schmitz G., Erdelyi Z. (2015). The earliest stage of phase growth in sharp concentration gradients. Acta Materialia, 87, 111-120. Retrieved from

Bezpalchuk V.M., Marchenko S.V., Rymar O.M., Bogatyrev O.O., Gusak A.M. (2015). Problem of the first phase to form in the reaction between the films of Ni and Al / Metallofiz. Noveishie Tekhnol. 37(1), 87-102.

Swaminathan P., Grapes M. D., Woll K., Barron S. C., LaVan D. A., Weihs T. P. (2013). Studying exothermic reactions in the Ni-Al system at rapid heating rates using a nanocalorimeter. Journal of Applied Physics, 113(14), 143509. Retrieved from

Liashenko O. Y., Lay S., Hodaj F. (2016). On the initial stages of phase formation at the solid Cu/liquid Sn-based solder interface. Acta Materialia, 117, 216-227. Retrieved from

Baras F., Turlo V., Politano O., Vadchenko S. G., Rogachev A. S., Mukasyan A. S. (2018). SHS in Ni/Al nanofoils: a review of experiments and molecular dynamics simulations. Advanced Engineering Materials, 20(8), 1800091. Retrieved from

Zaporozhets T. V., Korol Ya. D. (2016). The Inverse-Problem Approach for Forecasting Characteristics of a Self-Propagating High-Temperature Synthesis in Multilayer Foils in View of Competitive Formation of Phases. Metallofiz. Noveishie Tekhnol, 38(11), 1541-1560. Retrieved from

Pasichnyy M, Gusak A. (2008). Model of Lateral Growth Stage during Reactive Phase Formation. Defect and Diffusion Forum, 277, 47-52. Retrieved from

Klinger L., Brechet Y., Purdy G. (1998). On the kinetics of interface-diffusion-controlled peritectoid reactions. Acta materialia, 46(8), 2617-2621. Retrieved from

Abyzov A. S., Schmelzer J. W., Davydov L. N. (2017). Heterogeneous nucleation on rough surfaces: Generalized Gibbs’ approach. The Journal of chemical physics, 147(21), 214705. Retrieved from

Pasichna V. M., Gusak A. M. (2018). Modeling of concentration and temperature dependencies of incubation time at decomposition of solid solution by Monte-Carlo method. Visnyk Cherkaskoho universytetu, seriia fizyko - matematychni nauky, (1), 3-11. Retrieved from