НУКЛЕАЦІЯ ТА КОНКУРЕНЦІЯ СПОЛУК В СИЛЬНО НЕГОМОГЕННИХ ВІДКРИТИХ СИСТЕМАХ – НОВІ МОДЕЛІ

##plugins.themes.bootstrap3.article.main##

A. M. Gusak
V. M. Pasichna

Анотація

Конкурентна нуклеація проміжної фази в полі різкого градієнта концентрації протікає зазвичай на початкових стадіях твердотільних реакції між матеріалами. Твердотільні хімічні реакції в зоні контакту двох матеріалів можуть бути проаналізовані з фізичної точки зору як альтернативні ланцюги послідовних або одночасних фазових перетворень у дуже різко неоднорідній дифузійній зоні. Фактичний ланцюг перетворень вибирається умовою найшвидшого зародкоутворення на кожному новому кроці. Теорія нуклеації за таких умовв контактній зоні при реакційній дифузії має майже 40-річну історію і коротко розглядається та обговорюється в цій роботі. ВказанаЦя теоретична інтерпретація конкуренції фаз базується на двох основних ідеях: (1) кінетичне пригніченнядушення виникаючих докритичних/закритичних зародків за рахунок швидкого росту сусідніх фаз, (2) термодинамічне пригніченнядушення нуклеаційї різким градієнтом концентрації. 

Kінетичне пригніченнядушення пояснює послідовність фазоутворень при взаємодії твердотільних речовин, твердотільної речовини та рідини (пайка), в реакціях точкового контакту між нанодротинами. Термодинамічні обмеження (пригніченнядушення зародкоутворення) пояснюють основним чином виібір першої  фази, яка утворюється і росте першою щодо формування та росту, що відбувається переважно шляхомза допомогою режиму поліморфного зародкоутворення в сформованому на початку невпорядкованому контактному шарі. Зародкоутворення стає можливим, коли цей невпорядкований прошарок, поки він не виросте до деякої порогової товщини. 

У цій роботі представлені нові теоретичні розрахунки а також результати, отримані шляхом комп'ютерного моделювання, що підтвержені експериментально. Методом Монте-Карло досліджено залежність нуклеаційного часу від пересичення  при розпаді гомогенного бінарного сплаву та  залежність часу формування фаз B2 та  L10  від градієнта концентрації при упорядкуванні неоднорідного бінарного твердого сплаву. Ці результати підтверджені експериементально в таких системах як Cu-Si, Ni-Si, NiAl,  рідкa мідь-рідке олово. 

##plugins.themes.bootstrap3.article.details##

Розділ
ФІЗИКА МАТЕРІАЛІВ
Біографії авторів

A. M. Gusak, Черкаський національний університет імені Богдана Хмельницького

Доктор фіз.-мат. наук, професор, заслужений діяч науки і техніки України,  пр.н.с. лабораторії математичної фізики кафедри фізики ННІ ІНФОТЕХ

V. M. Pasichna, Черкаський національний університет імені Богдана Хмельницького

Магістр фізики

Посилання

Gusak, A. M., Zaporozhets, T. V., Lyashenko, Y. O., Kornienko, S. V., Pasichnyy, M. O., & Shirinyan, A. S. (2010). Diffusion-controlled solid state reactions: in alloys, thin-films, and nanosystems. John Wiley & Sons. Retrieved from ISBN 978-3-527-408849

Tu, K. N., & Gusak, A. M. (2014). Kinetics in nanoscale materials (Vol. 2). New York: Wiley. Retrieved from ISBN 9780470881408

Lu, K. C., Tu, K. N., Wu, W. W., Chen, L. J., Yoo, B. Y., & Myung, N. V. (2007). Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-Ni Si∕ Si. Applied Physics Letters, 90(25), 253111. Retrieved from https://doi.org/10.1063/1.2750530

Kovalchuk, A. O., Gusak, A. M., & Tu, K. N. (2010). Theory of repeating nucleation in point contact reactions between nanowires. Nano letters, 10(12), 4799-4806. Retrieved from https://doi.org/10.1021/nl100969d

Ostwald W. (1897). Studien über die Bildung und Umwandlung fester Körper, Zeitschrift für physikalische Chemie, 22(1), 289-330. Retrieved from https://doi.org/10.1515/zpch1897-2233

Schmelzer J. W. P., Abyzov A. S. (2017). How do crystals nucleate and grow: Ostwald’s rule of stages and beyond. Thermal Physics and Thermal Analysis, 195-211. Retrieved from https://doi.org/10.1007/978-3-319-45899-1_9

Gusak A. M., Gurov K. P. (1982). The Physics of Metals and Metallography 53(5), 842.

Gusak A. M., Gurov K. P. (1990). Ob incubatsionnom periode obrazovaniya promezhutochnykh faz (On the incubation period of intermediate phases formation). Izvestiya of Acad. Sciences USSR. Metals (1), 163.

Gusak, A. M., Nazarov, A. V. (1992). On the description of solid state amorphizing reactions. Journal of Physics: Condensed Matter, 4(20), 4753. Retrieved from https://doi.org/10.1088/0953-8984/4/20/002

Gusak K. P., Gurov K. P. (1992). Peculiarities of Intermediate Phase Nucleation in the Process of Chemical Diffusion. Solid State Phenomena, 23-24, 117-122. Retrieved from https://doi.org/10.4028/www.scientific.net/SSP.23-24.117

Danielewski M., Wierzba B., Gusak A., Pawełkiewicz M., Janczak-Rusch J. (2011). Chemical interdiffusion in binary systems; interface barriers and phase competition. Journal of Applied Physics, 110(12), 123705. Retrieved from https://doi.org/10.1063/1.3667293

Gusak, A. M., Lucenko, G. V. (1998). Interdiffusion and solid state reactions in powder mixtures—one more model. Acta materialia, 46(10), 3343-3353. Retrieved from https://doi.org/10.1016/S1359-6454(98)00054-8

Wagner C. (1969). The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems. Acta Metallurgica, 17(2), 99-107. Retrieved from https://doi.org/10.1016/0001-6160(69)90131-X

Van Loo F. J. J. (1990). Multiphase diffusion in binary and ternary solid-state systems. Progress in Solid State Chemistry, 20(1), 47-99. Retrieved from https://doi.org/10.1016/0079-6786(90)90007-3

Gusak A., Zaporozhets T., Storozhuk N. (2019). Phase competition in solid-state reactive diffusion revisited — Stochastic kinetic mean-field approach. The Journal of chemical physics, 150(17), 174109. Retrieved from https://doi.org/10.1063/1.5086046

Gusak A. M., Storozhuk N. (2019). Two remarks on Wagner integrated diffusion coefficient, Metallofiz. Noveishie Tekhnol, 41(5), 583-593. Retrieved from https://doi.org/10.15407/mfint.41.05.0583

Gusak A. M. (1990). Osobennosti zarodysheobrazovaniya v pole gradienta koncentratsiy binarnoy systemy (Peculiarities of nucleation in the field of concentration gradient of the binary system). Ukrainian Journal of Physics, 35(5), 725-729.

Gusak A. M., Dubiy O. V., Kornienko S. V. (1991). Zarodysheobrazovaniye promezhutochnykh faz pri vzaimnoy diffuzii (Nucleation of intermediate phases upon interdiffusion). Ukrainian Journal of Physics, 36, 286-291.

Desre P. J., Yavari, A. R. (1990). Suppression of crystal nucleation in amorphous layers with sharp concentration gradients. Physical Review Letters, 64(13), 1533. Retrieved from https://doi.org/10.1103/PhysRevLett.64.1533

Desre P. J. (1991). Effect of sharp concentration gradients on the stability of a twocomponent amorphous layer obtained by solid state reaction. Acta metallurgica et materialiсa, 39(10), 2309-2315. Retrieved from https://doi.org/10.1016/09567151(91)90013-Q

Hodaj F., Gusak A. M., Desre P. J. (1998). Effect of sharp concentration gradients on the nucleation of intermetallics in disordered solids: influence of the embryo shape. Philosophical Magazine A, 77(6), 1471-1479. Retrieved from https://doi.org/10.1080/01418619808214264

Gusak A. M., Hodaj F., Bogatyrev A. O. (2001). Kinetics of nucleation in the concentration gradient. Journal of Physics: Condensed Matter, 13(12), 2767. Retrieved from https://doi.org/10.1088/0953-8984/13/12/302

Hodaj F., Gusak, A. M. (2004). Suppression of intermediate phase nucleation in binary couples with metastable solubility. Acta materialia, 52(14), 4305-4315. Retrieved from https://doi.org/10.1016/j.actamat.2004.05.047

Gusak A.M., F. Hodaj (2005). "Nucleation in a Concentration Gradient." Chapter 10 in "Nucleation Theory and Applications", ed. J. W. P. Schmelzer, Wiley VCH: 375-417. Retrieved from https://doi.org/10.1002/9783527631025.ch4

Gusak A. M., Hodaj F., Schmitz G. (2011). Flux-driven nucleation at interfaces during reactive diffusion. Philosophical Magazine Letters, 91(9), 610-620. Retrieved from https://doi.org/10.1080/09500839.2011.600257

Chou Y. C., Wu W. W., Cheng S. L., Yoo B. Y., Myung N., Chen L. J., & Tu K. N. (2008). In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si. Nano letters, 8(8), 2194-2199. Retrieved from https://doi.org/10.1021/nl080624j

Wu W. W., Lu K. C., Wang C. W., Hsieh H. Y., Chen S. Y., Chou Y. C., Yu S.Y., Chen L.J., Tu K. N. (2010). Growth of multiple metal/semiconductor nano heterostructures through point and line contact reactions. Nano letters, 10(10), 3984-3989. Retrieved from https://doi.org/10.1021/nl101842w

Gusak A. M., Yarmolenko M. V. (1993). A simple way of describing the diffusion phase growth in cylindrical and spherical samples. Journal of applied physics, 73(10), 48814884. Retrieved from https://doi.org/10.1063/1.353805

Kovalchuk A. O., Gusak A. M. (2009). Reactions in nanowires upon point contact in metal-silicon system. Nanosystems, Nanomaterials, Nanotechnologies, 7(4), 1163—1175. Retrieved from https://doi.org/10.1063/1.353805

Gusak, A. M., Tu, K. N. (2002). Kinetic theory of flux-driven ripening. Physical Review B, 66(11), 115403. Retrieved from https://doi.org/10.1103/PhysRevB.66.115403

Liashenko O. Y., Hodaj F. (2015). Differences in the interfacial reaction between Cu substrate and metastable supercooled liquid Sn–Cu solder or solid Sn–Cu solder at 222° C: Experimental results versus theoretical model calculations. Acta Materialia, 99, 106118. Retrieved from https://doi.org/10.1016/j.actamat.2015.07.066

Hodaj F., Liashenko O., Gusak A. M. (2014). Cu3Sn suppression criterion for solid copper/molten tin reaction. Philosophical Magazine Letters, 94(4), 217-224. Retrieved from https://doi.org/10.1080/09500839.2014.886782

Soisson F., Martin G. (2000). Monte Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics. Physical Review B, 62(1), 203. Retrieved from https://doi.org/10.1103/PhysRevB.62.203

Erdélyi Z., Pasichnyy M., Bezpalchuk V., Tomán J. J., Gajdics B., Gusak A. M. (2016). Stochastic kinetic mean field model. Computer Physics Communications, 204, 31-37. Retrieved from https://doi.org/10.1016/j.cpc.2016.03.003

Bezpalchuk V. M., Kozubski, A. M, Gusak A. M. (2017). Simulation of the tracer diffusion, bulk ordering, and surface reordering in fcc structures by kinetic mean-field. Metal physics advances, 18(3), 205-233. Retrieved from https://doi.org/10.15407/ufm.18.03.205

Bezpalchuk V. Abdank-Kozubski R, Pasichnyy M, Gusak A. (2018). Tracer Diffusion and Ordering in FCC Structures-Stochastic Kinetic Mean-Field Method vs. Kinetic Monte Carlo. In Defect and Diffusion. Trans Tech Publications, 383, 59-65. Retrieved from https://doi.org/10.4028/www.scientific.net/DDF.383.59

Wong G. C., Johnson W. L., Cotts E. J. (1990). Solid state amorphization reactions in deformed Ni-Zr multilayered composites. Journal of Materials Research, 5(3), 488-497. Retrieved from https://doi.org/10.1557/JMR.1990.0488

Highmore R.J., Somekh R.E., Evetts J.E., Greer A.L. (1988). Differential scanning calorimetry studies of solid state amorphization in multilayer NiZr, J. Less-Common Met., 140, 353–360. Retrieved from https://doi.org/10.1016/0022-5088(88)90396-7

Gusak A.M., Nazarov A.V. (1990). K opisaniyu tverdofaznykh reaktsii diffuzionnoi amorfizatsii (Description of the Kinetics of Solid-Phase Diffusion Amorphizing Reactions), Metallofizika, 12(2), 48–52.

Perepezko J. H., Park J. S., Landry K., Sieber H., da Silva Bassani M. H., Edelstein A. S. (1997). Initial phase formation during interdiffusion. MRS Online Proceedings Library Archive, 481. Retrieved from https://doi.org/10.1557/PROC-481509

Perepezko J. H., da Silva Bassani M. H., Park J. S., Edelstein A. S., Everett R. K. (1995). Diffusional reactions in composite synthesis. Materials Science and Engineering: A, 195, 1-11. Retrieved from https://doi.org/10.1016/0921-5093(94)06500-4

Pasichnyy M. O., Schmitz G., Gusak A. M., Vovk V. (2005). Application of the critical gradient concept to the nucleation of the first-product phase in Co∕ Al thin films. Physical Review B, 72(1), 014118. Retrieved from https://doi.org/10.1103/PhysRevB.72.014118

Ibrahim M., Balogh Z., Stender P., Schlesiger R., Greiwe G. H., Schmitz G., Parditka B., Langer G.A., Czik A., Erdélyi Z. (2014). On the influence of the stacking sequence in the nucleation of Cu3Si: Experiment and the testing of nucleation models. Acta Materialia, 76, 306-313. Retrieved from https://doi.org/10.1016/j.actamat.2014.05.006

Parditka B., Toman J., Cserhati C., Jánosfalvi Z., Csik A., Zizak I., Feyerherm R., Schmitz G., Erdelyi Z. (2015). The earliest stage of phase growth in sharp concentration gradients. Acta Materialia, 87, 111-120. Retrieved from https://doi.org/10.1016/j.actamat.2014.11.048

Bezpalchuk V.M., Marchenko S.V., Rymar O.M., Bogatyrev O.O., Gusak A.M. (2015). Problem of the first phase to form in the reaction between the films of Ni and Al / Metallofiz. Noveishie Tekhnol. 37(1), 87-102.

Swaminathan P., Grapes M. D., Woll K., Barron S. C., LaVan D. A., Weihs T. P. (2013). Studying exothermic reactions in the Ni-Al system at rapid heating rates using a nanocalorimeter. Journal of Applied Physics, 113(14), 143509. Retrieved from https://doi.org/10.1063/1.4799628

Liashenko O. Y., Lay S., Hodaj F. (2016). On the initial stages of phase formation at the solid Cu/liquid Sn-based solder interface. Acta Materialia, 117, 216-227. Retrieved from https://doi.org/10.1016/j.actamat.2016.07.021

Baras F., Turlo V., Politano O., Vadchenko S. G., Rogachev A. S., Mukasyan A. S. (2018). SHS in Ni/Al nanofoils: a review of experiments and molecular dynamics simulations. Advanced Engineering Materials, 20(8), 1800091. Retrieved from https://doi.org/10.1002/adem.201800091

Zaporozhets T. V., Korol Ya. D. (2016). The Inverse-Problem Approach for Forecasting Characteristics of a Self-Propagating High-Temperature Synthesis in Multilayer Foils in View of Competitive Formation of Phases. Metallofiz. Noveishie Tekhnol, 38(11), 1541-1560. Retrieved from https://doi.org/10.15407/mfint.38.11.1541

Pasichnyy M, Gusak A. (2008). Model of Lateral Growth Stage during Reactive Phase Formation. Defect and Diffusion Forum, 277, 47-52. Retrieved from https://doi.org/10.4028/www.scientific.net/DDF.277.47

Klinger L., Brechet Y., Purdy G. (1998). On the kinetics of interface-diffusion-controlled peritectoid reactions. Acta materialia, 46(8), 2617-2621. Retrieved from https://doi.org/10.1016/S1359-6454(97)00471-0

Abyzov A. S., Schmelzer J. W., Davydov L. N. (2017). Heterogeneous nucleation on rough surfaces: Generalized Gibbs’ approach. The Journal of chemical physics, 147(21), 214705. Retrieved from https://doi.org/10.1063/1.5006631

Pasichna V. M., Gusak A. M. (2018). Modeling of concentration and temperature dependencies of incubation time at decomposition of solid solution by Monte-Carlo method. Visnyk Cherkaskoho universytetu, seriia fizyko - matematychni nauky, (1), 3-11. Retrieved from http://nbuv.gov.ua/UJRN/VchuFM_2018_1_3