NEW THERMODYNAMIC APPROACHES TO FAILURE ANALYSIS IN MICROELECTRONIC MATERIALS

Main Article Content

A. М. Gusak
A. Titova

Abstract

Failure of the microelectronic device may be treated in the frame of non-equilibrium thermodynamics applied to open systems under the condition of incompatibility of steady states for different processes. The criterion of failure can be related to some threshold amount of the structural entropy produced and accumulated in the system by the external forces. This hypothesis provides a simple interpretation of the empirical Black equation for the mean time to failure in the case of electromigration, and helps to predict similar equations for the cases of thermo- and stress migration. The failure itself can be treated as a phase/structure transformation in the open system and described by kinetics similar to Kolmogorov-Avrami kinetics of the first-order phase transformations.

Article Details

Section
Materials Physics
Author Biographies

A. М. Gusak, The Bohdan Khmelnytsky National University of Cherkasy

Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine

Ensemble3 Centre of Excellence, Wolczynska Str. 133, 01-919 Warsaw, Poland

A. Titova, The Bohdan Khmelnytsky National University of Cherkasy

Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine

Ensemble3 Centre of Excellence, Wolczynska Str. 133, 01-919 Warsaw, Poland

References

Tu, K. N. (2010). Electronic thin-film reliability. Cambridge University Press. Retrieved from https://doi.org/10.1017/CBO9780511777691

Tu, K. N., & Gusak, A. M. (2019). A unified model of mean-time-to-failure for electromigration, thermomigration, and stress-migration based on entropy production. Journal of Applied Physics, 126(7), 075109. Retrieved from https://doi.org/10.1063/1.5111159

Tian, T., Gusak, A. M., Liashenko, O. Y., Han, J. K., Choi, D., & Tu, K. N. (2012, May). A new physical model for life time prediction of Pb-free solder joints in electromigration tests. In 2012 IEEE 62nd Electronic Components and Technology Conference (pp. 741-746). IEEE. Retrieved from https://doi.org/10.1109/ECTC.2012.6248915

Liu, Y., Gusak, A., Jing, S., & Tu, K. N. (2022). Fast prediction of electromigration lifetime with modified mean-time-to-failure equation. Materials Letters, 325, 132880. Retrieved from https://doi.org/10.1016/j.matlet.2022.132880

Svoboda, R. (2021). Crystallization of glasses–When to use the Johnson-Mehl-Avrami kinetics?. Journal of the European Ceramic Society, 41(15), 7862-7867. Retrieved from https://doi.org/10.1016/j.jeurceramsoc.2021.08.026

Zahedmaesh, H., Pedreira, O. V., Tokei, Z., & Croes, K. (2021, March). Electromigration limits of copper nano-interconnects. In 2021 IEEE International Reliability Physics Symposium (IRPS) (pp. 1-6). IEEE. Retrieved from https://doi.org/10.1109/IRPS46558.2021.9405091

Zaporozhets, T. V., Gusak, A. M., Tu, K. N., & Mhaisalkar, S. G. (2005). Three-dimensional simulation of void migration at the interface between thin metallic film and dielectric under electromigration. Journal of applied physics, 98(10), 103508. Retrieved from https://doi.org/10.1063/1.2131204

Gusak, A. M., Zaporozhets, T. V., Lyashenko, Y. O., Kornienko, S. V., Pasichnyy, M. O., & Shirinyan, A. S. (2011). Diffusion-controlled solid state reactions: in alloys, thin films and nanosystems. John Wiley & Sons.

Gusak, A. M., Lutsenko, G. V., & Tu, K. N. (2006). Ostwald ripening with non-equilibrium vacancies. Acta materialia, 54(3), 785-791. Retrieved from https://doi.org/10.1016/j.actamat.2005.09.035