INFLUENCE OF SMAT PROCESSING STEEL SURFACE ON THE CARBONIZATION PROCESS

Main Article Content

В. В. Морозович
http://orcid.org/0000-0002-4680-1466
Я. Д. Король
http://orcid.org/0000-0001-8186-9354
Т. А. Красовський
http://orcid.org/0000-0002-2843-0163
Ю. О. Ляшенко
http://orcid.org/0000-0001-7015-1662

Abstract

This article is about the influence of preliminary cold deformation of steel surface by SMAT (surface mechanical attrition treatment) technology to explore the process of solid carbonization of 40X steel samples. The influence of SMAT processing on the change of texture of steel samples was investigated by the methods of X - ray crystallography. The analysis of the broadening the diffraction lines indicates not just the creating of microstress during SMAT processing, but also an increase in the concentration of carbon in the surface layers of steel samples after solid carbonization. Peculiarities of iron γ-phase phaseformation in these samples have been established. The change in the dependence of the microhardness in the surface layer on the time of SMAT processing and subsequent carbonization of steel samples is determined.

The influence SMAT treatment of surface steel layers on the subsequent carbonization of steel process was investigated by X-ray diffraction analysis. The analysis showed that the broadening of the diffraction lines from the samples obtained after SMAT treatment is associated with a decrease in grain size and the emergence of microvoltages. However, in contrast to samples processed by SMAT technology, in carbonized samples the broadening of the peaks is also caused by an increase in carbon content. The obtained results of X-ray diffraction analysis allow us to draw the following conclusions: after processing by SMAT technology, a textured steel surface with the orientation of the planes (110) and (220) is formed. After a long (30 min.) SMAT treatment in the carbonization process there are diffraction peaks from the γ-Fe phase.

It established that the surface SMAT treatment of steel also leads to changes in the microhardness and depth penetration of carbon in the process of solid carbonization. In SMAT-treated samples, the microhardness increases after a short treatment (5 min). Ten-minute SMAT treatment reduces the microhardness readings in the surface layer. Prolonged (30 min) treatment causes an increase in microhardness in near-surface layers (up to 700 μm) of the sample, at greater distances from the surface the microhardness values repeat the values of untreated SMAT sample, which requires further and more detailed study.

Article Details

Section
Materials Physics
Author Biographies

В. В. Морозович, Черкаський національний університет імені Богдана Хмельницького, Черкаси, Україна

аспірант кафедри фізики, ННІ ІНФОТЕХ

Я. Д. Король, Черкаський національний університет імені Богдана Хмельницького, Черкаси, Україна

канд. фіз.-мат. наук, доцент,

директор навчально-наукового центру фізико-хімічних досліджень ЧНУ

Т. А. Красовський, Київський академічний університет НАН України, Київ, Україна

завідувач лабораторії

Ю. О. Ляшенко, Черкаський національний університет імені Богдана Хмельницького, Черкаси, Україна

доктор фіз.-мат. наук, професор, ННІ ІНФОТЕХ

References

Lu K. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment / K. Lu, J. Lu // Materials Science and Engineering. –2004. –Vol. 375. – P. 38-45. Режим доступу: https://doi.org/10.1016/j.msea.2003.10.261

Tao N. R. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment / N. R. Tao, Z. B. Wang, W. P. Tong, M. L. Sui, J. Lu, K. Lu // Acta Materialia. – 2002. – Vol. 50, № 18. – P. 4603-4616. Режим доступу: https://doi.org/10.1016/S1359-6454(02)00310-5

Zhang H. W. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment / H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, K. Lu // Acta Materialia. – 2003. – Vol. 51, № 7. – P. 1871-1881. Режим доступу: https://doi.org/10.1016/S1359-6454(02)00594-3

Wu X. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment / X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu // Acta Materialia. – 2005. – Vol. 53, № 3. – P. 681-691. Режим доступу: https://doi.org/10.1016/j.actamat.2004.10.021

Zhou L. Strain-induced refinement in a steel with spheroidal cementite subjected to surface mechanical attrition treatment / L. Zhou, G. Liu, X. L. Ma, K. Lu // Acta Materialia. – 2008. – Vol. 56, № 1. – P. 78-87. Режим доступу: https://doi.org/10.1016/j.actamat.2007.09.003

Valiev R. Z. Bulk nanostructured materials from severe plastic deformation / R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov // Progress in Materials Science. – 2000. – Vol. 45, № 2, – P. 103-189. Режим доступу: http://li.mit.edu/S/td/Paper/Valiev00.pdf

Yurkova A. I. Structure and mechanical properties of iron subjected to surface severe plastic deformation by attrition: II. Mechanical properties of nano-and submicrocrystalline iron / A. I. Yurkova, Y. V. Milman, A. V. Byakova // Russian Metallurgy (Metally). – 2010. – Vol. 2010, № 4. – P. 258-263. Режим доступу: https://doi.org/10.1134/S0036029510040026

Panin V. E. On the nature of low-temperature brittleness of BCC steels / V. E. Panin, L. S. Derevyagina, N. M. Lemeshev, A. V. Korznikov, A. V. Panin, M. S. Kazachenok // Physical Mesomechanics. – 2014. – Vol. 17, № 2. – P. 89-96. Режим доступу: https://doi.org/10.1134/S1029959914020015

Raab G. I. Dislocation structure evolution during plastic deformation of low-carbon steel / G. I. Raab, Y. M. Podrezov, G. N. Aleshin // Materials Science Forum. – 2016. – Vol. 870, – P. 253-258. Режим доступу: https://doi.org/10.4028/www.scientific.net/MSF.870.253

Kovalevskaya Z. G. Features of formation of layers nitrided in plastically deformed steel 40X treated with intensive nitrogen ion fluxes / Z. G. Kovalevskaya, V. A. Kukareko // Mathematics and Mechanics. Physics. –2014. – Vol. 324, № 2. – P. 126. Режим доступу: http://earchive.tpu.ru/bitstream/11683/44215/1/bulletin_tpu-2014-v324-i2.pdf#page=126

Belkin P. N. Plasma electrolytic saturation of steels with nitrogen and carbon / P. N. Belkin, A. Yerokhin, S. A. Kusmanov // Surface and Coatings Technology. – 2016. – Vol. 307. – P. 1194-1218. Режим доступу: https://doi.org/10.1016/j.surfcoat.2016.06.027

Geguzin Y. E. Interphase boundary motion kinetics in mutual diffusion in two-component system / Y. E. Geguzin, Y. S. Kaganovskij, L. N. Paritskaya, V. I. Solunskij // Fizika Metallov i Metallovedenie. – 1979. – Vol. 47, № 4. – P. 821-833. Режим доступу: https://inis.iaea.org/search/search.aspx?orig_q=RN:11502016

Spiridonova I. M. The study of the influence of prior cold plastic deformation on the diffusion of carbon and boron in the boron-containing alloys on the iron base / I. M. Spiridonova, M. Y. Filonenko, S. B. Piliaieva. // Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport. – 2008. – Vol.1, № 23. – P. 183-186. Режим доступу: https://doi.org/10.15802/stp2008/15009

Vlasov V. M. Effect of preliminary cold plastic deformation on the kinetics of the nicotriation process of heat-resistant steels / V. M. Vlasov, K. V. Zhigunov, I. S. Ivan'kin, M. I. Vasin // Metal science and heat treatment. – 2002. – Vol. 44, № 9. – P. 402-404. Режим доступу: https://doi.org/10.1023/A:1021959302374

Дерев’янко С. І. Вплив обробки поверхні за технологією SMAT на механічні властивості поверхневих шарів міді / С. І. Дерев’янко, В. В. Морозович, Т. А. Красовський, Ю. О. Ляшенко // Вісник Черкаського університету. Серія «Фізико-математичні науки». – 2019. – №1. – С. 60-68. Режим доступу: http://eprints.cdu.edu.ua/id/eprint/2678