MODELING OF PATTERN FORMATION OF THE ORDERED INTERMEDIATE PHASES DURING CO-DEPOSITION OF BINARY THIN FILM

Main Article Content

S. Abakumov
A. M. H

Abstract

Formation of the intermediate phase patterns in the thin-film co-deposition process is simulated using the Stochastic Kinetic Mean-Field method and Monte Carlo. Three basic morphologies of the 2D sections are distinguished: (1) spots (rod-like in 3D), (2) layered structures-lamellae, zigzags, and labyrinths (plate-like in 3D), and (3) net-like structures (inverse to spot-like structures, when spots become majority and the surrounding matrix becomes a minority). They are characterized and distinguished with the help of only one special topological parameter.

Article Details

Section
Computer Modelling in Physics
Author Biographies

S. Abakumov, Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine

Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine

A. M. H, Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine Ensemble3 Centre of Excellence, Wolczynska Str. 133, 01-919 Warsaw, Poland

Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine

Ensemble3 Centre of Excellence, Wolczynska Str. 133, 01-919 Warsaw, Poland

References

D.A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, Self-organized, rodlike, micrometerscale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic, Chem. Mater. 18 (2006) 2450–2457. – Режим доступу: https://doi.org/10.1021/cm060136h

K. Sadecka, M. Gajc, K. Orlinski, H.B. Surma, A. Klos, I. Jozwik-Biala, K. Sobczak, P. Dluzewski, J. Toudert, D.A. Pawlak, When eutectics meet plasmonics: nanoplasmonic, volumetric, self-organized, silver-based eutectic, Adv. Opt. Mater. 3 (2015) 381–389. – Режим доступу: https://doi.org/10.1002/adom.201400425

K. Wysmulek, J. Sar, P. Osewski, K. Orlinski, K. Kolodziejak, A. Trenczek-Zajac, M. Radecka, D.A. Pawlak, A SrTio3-TiO2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production, Appl. Catal. B, Environ. 206 (2017) 538–546. – Режим доступу: https://doi.org/10.1016/j.apcatb.2017.01.054

S. Akamatsu, M. Plapp, Eutectic and peritectic solidification patterns, current opinion in solid state. Mater. Sci. 20 (2016) 46–54. – Режим доступу: https://doi.org/10.1016/j.cossms.2015.10.002

K. A. Jackson and J. D. Hunt, “Lamellar and Rod Eutectic Growth,” Trans. Metall. Soc. AIME 236, 1129–1142 (1966). – Режим доступу: https://doi.org/10.1016/j.jeurceramsoc.2021.08.026

Cahn, J.W. (1961). On spinodal decomposition. Acta Metallurgica, 9(9), pp. 795-801. – Режим доступу: https://doi.org/10.1016/0001-6160(61)90182-1

Rátkai, L., Tóth, G. I., Környei, L., Pusztai, T., & Gránásy, L. (2017). Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy. Journal of Materials Science, 52, 5544-5558. – Режим доступу: https://doi.org/10.1007/s10853-017-0853-8

M. O. Ivanov and A. Yu. Naumuk, Analysis of Spatial Structures Arising During Eutectic Crystallization and Cellular Decomposition of Solid Solutions, Metallofiz. Noveishie Tekhnol., 36, No. 12: 1571—1596 (2014). – Режим доступу: https://doi.org/10.15407/mfint.36.12.1571

Y. Lu, B. Derby, H. Sriram, K. Kadirvel, C. Wang, X. Liu, A. Misra, Y. Wang, Microstructure development and morphological transition during deposition of immiscible alloy films, Acta Mater. 220 (2021) 117313. – Режим доступу: https://doi.org/10.1016/j.actamat.2021.117313

M. Powers, B. Derby, S.N. Manjunath, A. Misra, Hierarchical morphologies in co-sputter deposited thin films, Phys. Rev. Mater. 4 (2020) 123801. – Режим доступу: https://doi.org/10.1103/PhysRevMaterials.4.123801

T. Xie, L. Fu, X. Cao, J. Zhu, W. Yang, D. Li, L. Zhou, Self-assembled binary immiscible Cu-transition metal multilayers prepared by co-sputtering deposition, Thin Solid Films 705 (2020) 138037. – Режим доступу: https://doi.org/10.1016/j.tsf.2020.138037

M. Powers, J.A. Stewart, R. Dingreville, B.K. Derby, A. Misra, Compositionally driven formation mechanism of hierarchical morphologies in co-deposited immiscible alloy thin films, Nanomaterials 11 (2021) 2635. – Режим доступу: https://doi.org/10.3390/nano11102635

G. Karczewski, M. Szot, S. Kret, L. Kowalczyk, S. Chusnutdinow. T. Wojtowicz, S. Schreyeck, K. Bruner, C. Schumacher, L.W. Molenkamp, „Nanoscale morphology of multilayer PbTe/CdTe heterostructures and its effect on photoluminescence properties”, Nanotechnology 26, 135601 (2015). – Режим доступу: https://doi.org/10.1088/0957-4484/26/13/135601

M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, S. Tatarenko, High-Curie-temperature ferromagnetism in self- organized Ge1-xMnx nanocolumns, Nat. Mater. 2006, 5(8), 653-659. – Режим доступу: https://doi.org/10.1038/nmat1686

T Dietl, K Sato, T Fukushima, A Bonanni, Matthieu Jamet, André Barski, S Kuroda, M Tanaka, Pham Nam Hai, H Katayama-Yoshida (2015). Spinodal nanodecomposition in semiconductors doped with transition metals. Reviews of Modern Physics, 87(4), 1311. – Режим доступу: https://doi.org/10.1103/RevModPhys.87.1311

Xie, Z., Meng, G., Wen, L., Zhao, Z., Sun, H., Qin, H., ... & Zhao, J. (2024). Microstructure and magnetic properties of the ferromagnetic semiconductor Ge 1− x Mn x following rapid thermal annealing. Physical Review B, 109(2), 024407. – Режим доступу: https://doi.org/10.1103/PhysRevB.109.024407

Titova, A., Zapolsky, H., & Gusak, A. (2024). Memory effects during co-deposition of binary alloys. Scripta Materialia, 241, 115897. – Режим доступу: https://doi.org/10.1016/j.scriptamat.2023.115897

Z. Erdélyi, M. Pasichnyy, V. Bezpalchuk, J.J. Tomán, B. Gajdics, A.M. Gusak, Stochastic kinetic mean field model, Comput. Phys. Commun. 204 (2016) 31–37. – Режим доступу: https://doi.org/10.1016/j.cpc.2016.03.003

V.M. Bezpalchuk, R. Kozubski, A.M. Gusak, Simulation of the tracer diffusion, bulk ordering, and surface reordering in F.C.C. structures by kinetic mean-field method, Prog. Phys. Met. 18 (3) (2017) 205–233. – Режим доступу: https://doi.org/10.15407/ufm.18.03.205

A. Gusak, T. Zaporozhets, N. Storozhuk, Phase competition in solid-state reactive diffusion revisited—stochastic kinetic mean-field approach, J. Chem. Phys. 150 (2019). – Режим доступу: https://doi.org/10.1063/1.5086046

Andriy Gusak and Tetiana Zaporozhets, Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo, Metallofiz. Noveishie Tekhnol., 40, No. 11: 1415–1435 (2018). – Режим доступу: https://doi.org/10.15407/mfint.40.11.1415

B. Gajdics, J.J. Tomán, H. Zapolsky, Z. Erdélyi, G. Demange, A multiscale procedure based on the stochastic kinetic mean field and the phase-field models for coarsening, J. Appl. Phys. 126 (2019). – Режим доступу: https://doi.org/10.1063/1.5099676

B. Gajdics, J.J. Tomán, Z. Erdélyi, An effective method to calculate atomic movements in 3D objects with tuneable stochasticity (3DO-SKMF), Comput. Phys. Commun. 258 (2021) 107609. – Режим доступу: https://doi.org/10.1016/j.cpc.2020.107609

G. Martin, Atomic mobility in Cahn’s diffusion model, Phys. Rev. B 41 (1990) 2279. – Режим доступу: https://doi.org/10.1103/PhysRevB.41.2279

Z. Erdélyi, M. Sladecek, L.-M. Stadler, I. Zizak, G.A. Langer, M. Kis-Varga, D.L. Beke, B. Sepiol, Transient interface sharpening in miscible alloys, Science 306 (2004) 1913–1915. – Режим доступу: https://doi.org/10.1126/science.1104400

Z. Erdélyi, D.L. Beke, A. Taranovskyy, Dissolution and off-stoichiometric formation of compound layers in solid state reactions, Appl. Phys. Lett. 92 (2008). – Режим доступу: https://doi.org/10.1063/1.2905334

Gusak, A. M., Zaporozhets, T. V., Lyashenko, Y. O., Kornienko, S. V., Pasichnyy, M. O., & Shirinyan, A. S. (2010). Diffusion-controlled solid state reactions: in alloys, thin films and nanosystems. John Wiley & Sons. – Режим доступу: https://doi.org/10.1002/9783527631025

Gusak, A., & Storozhuk, N. (2017). Diffusion-Controlled Phase Transformations in Open Systems. In Handbook of Solid State Diffusion, Volume 2 (pp. 37-100). Elsevier. – Режим доступу: https://doi.org/10.1016/B978-0-12-804548-0.00002-5

Gusak, A. M., Titova, A., & Chen, Z. (2023). Flux-driven transformations in open systems revisited-crystallization of amorphous Ni-P driven by reaction with Sn. Acta Materialia, 261, 119366. – Режим доступу: https://doi.org/10.1016/j.actamat.2023.119366