ON DEFLECTIONS OF A PRISMATIC SHELL EXPONENTIALLY CUSPED AT INFINITY IN THE N = 0 APPROXIMATION OF HIERARCHICAL MODELS
##plugins.themes.bootstrap3.article.main##
Анотація
##plugins.themes.bootstrap3.article.details##
Посилання
Vekua I. (1955). On one method of calculating of prismatic shells. Trudy Tbilis.
Mat. Inst. 21, 191–259 (in Rus.)
Vekua I. (1985). Shell Theory: General Methods of Construction. Boston: Pitman
Advanced Publishing Program
Jaiani G. (2011). Cusped Shell-like Structures. Heidelberg-Dorbrecht-London-New
York: Springer
Avalishvili M., Gordeziani D. (2001). Investigation of a hierarchical model of
prismatic shells. Bull. Georgian Acad. Sci., 165(3), 485-488.
Chinchaladze N., Gilbert R.P., Jaiani G., Kharibegashvili S., Natroshvili D.
(2008). Existence and uniqueness theorems for cusped prismatic shells in the N-th hierarchical
model. Mathematical Methods in Applied Sciences, 31, 11, 1345-1367, DOI 10.1002
/mma.975, for the electronic version see: http://www3.interscience.wiley.com/
Jaiani G. (2001). Application of Vekua’s dimension reduction method to cusped
plates and bars. Bull. TICMI, 5, 27-34.
Jaiani G., Kharibegashvili S., Natroshvili D., Wendland W. (2004). Twodimensional
hierarchical models for prismatic shells with thickness vanishing at the boundary.
Journal of Elasticity, 77 (2), 95-122.
Jaiani G., Kharibegashvili S., Natroshvili D., Wendland W.L. (2003). Hierarchical
Models for Elastic Cusped Plates and Beams. Lecture Notes of TICMI, 4.
Meunargia T. (1999). On one method of construction of geometrically and
physically nonlinear theory of non-shallow shells. Proceedings of A.Razmadze Mathematical
Institute, Georgian Academy of Sciences, 119, 133-154.
Mikhlin S.G. (1970). Variational Methods in Mathematical Physics. Moscow:
Nauka (in Rus.)
Bitsadze A. (1981). Some Classes of Partial Differential Equations. Moscow:
Nauka (in Rus.)
Vekua I. (1948). New Methods of Solution of Elliptic Equations. MoscowLeningrad:
Gostekhizdat (in Rus.)