СПОСІБ ЗАДАННЯ ФУНКЦІЙ, ВИЗНАЧЕНИХ У ТЕРМІНАХ Q3 - ЗОБРАЖЕННЯ ДІЙСНИХ ЧИСЕЛ ТА ІНВАРІАНТАМИ У ЇХ ЗОБРАЖЕННІ

##plugins.themes.bootstrap3.article.main##

I. V. Zamrii

Анотація

У роботі розглядається ефективний спосіб означення неперервних функцій, визначених у термінах поліосновного трисимвольного зображення дробової частини дійсного числа (яке визначається ймовірнiсним вектором з додатними координатами і є узагальненням класичного трійкового
зображення).
Для вказаних функцій знайдено ефективний спосіб їх опису та дослідження. Встановлено критерій існування нескінченних рівнів функції та критерій кускової-сингулярності функції.

##plugins.themes.bootstrap3.article.details##

Номер
Розділ
МАТЕМАТИЧНА ТА ОБЧИСЛЮВАЛЬНА ФІЗИКА
Біографія автора

I. V. Zamrii, Державний університет телекомунікацій

доцент, кафедра вищої математики

Посилання

Pratsiovytyi M. V. (1998). Fractal Approach in Studies of Singular Distributions. Kyiv: View of the NPU named after M. P. Dragomanov (in ukrainian).

Turbin A. F., Pratsiovytyi M. V. (1992). Fractal sets, functions, distributions. K.:Naukova dumka (in russian).

Albeverio S., Baranovskyi O., Kondratiev Yu., Pratsiovytyi M. (2013). On one class of functions related to Ostrogradsky series and containing singular and nowhere monotonic functions. Scientific journal NPU of N. P. Drahomanov. Series 1. Physics and mathematics, No 15, 35-55.

Billingsley P. (1983). The singular function on bold play. Am. Sci., 71., 392-397.

Peter R. Massopust. (1995). Fractal functions, fractal surfaces, and wavelets. Academic Press; 1 edition, 383.

Pratsiovytyi M. V., Kalashnikov A. V. (2013). Self-infinitive singular and nowhere monotonic functions associated with the image of real numbers. Ukr. Mate. Journ, 65(3), 405-417 (in ukrainian).

Pratsiovytyi M., Vasylenko N. (2013). Fractal properties of functions defined in terms of Q -representation. Int. Journal of Math. Analysis, 7(64), 3155-3169.

Zamrii I. V., Pratsiovytyi M. V. (2015). Signularity of invertor the digitizer Q3-representation of the fractional part of the real number, its fractal and integral. Nonlinear oscillations (ISSN 1562-3076), 18(1), 55-70 (in ukrainian).

Pratsiovytyi M. V., Zamrii I. V. (2015). Continuous functions preserving digit 1 in the Q3-representation of number. Bukovinsky Mathematical Journal, 3(3-4), 142-159 (in ukrainian).

Salem R. (1943). On some singular monotonic function which are strictly increasing. Trans. Amer. Math. Soc, 53(3), 427-439.

Osaulenko R. Yu. (2016). A group of continuous transformations of a segment that preserves the frequency of digits -the image of a number. Collected Works of the Institute of Mathematics of the National Academy of Sciences of Ukraine, 13(3), 191-204 (in ukrainian).