ВИРОБНИЦТВО ГІБРИДНИХ СТРУКТУР ЗА ДОПОМОГОЮ ЧАСТКОВОГО СПІКАННЯ ПОРОШКІВ TI-6AL-4V У EЛЕКТРОННО НАПИЛЕНИХ ГРАТКАХ
##plugins.themes.bootstrap3.article.main##
Анотація
##plugins.themes.bootstrap3.article.details##
Посилання
Lefebvre L. P., Banhart J., Dunand D. C. Porous metals and metallic foams: current status and recent developments //Advanced engineering materials. – 2008. – Т. 10. – №. 9. – С. 775-787.
Sidambe A. T. Biocompatibility of advanced manufactured titanium implants—A review //Materials. – 2014. – Т. 7. – №. 12. – С. 8168-8188.
Wang X. et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review //Biomaterials. – 2016. – Т. 83. – С. 127-141.
Oh I. H. et al. Mechanical properties of porous titanium compacts prepared by powder sintering //Scripta Materialia. – 2003. – Т. 49. – №. 12. – С. 1197-1202.
Dunand D. C. Processing of titanium foams //Advanced engineering materials. – 2004. – Т. 6. – №. 6. – С. 369-376.
Chino Y., Dunand D. C. Directionally freeze-cast titanium foam with aligned, elongated pores //Acta Materialia. – 2008. – Т. 56. – №. 1. – С. 105-113.
Dewidar M. M., Lim J. K. Properties of solid core and porous surface Ti–6Al–4V implants manufactured by powder metallurgy //Journal of Alloys and Compounds. – 2008. –
Т. 454. – №. 1-2. – С. 442-446.
Jorgensen D.J., D.C. Dunand. Ti–6Al–4V with micro-and macropores produced by powder sintering and electrochemical dissolution of steel wires //Mater. Sci. and Eng. A. – 2010. – T. 527. – C. 849-853.
Pereloma E.V., Savvakin D.G., Carman A., Gazder A.A., Ivasishin O.M. Microstructure development and alloying elements diffusion during sintering of near-β titanium alloys // Key Eng. Mater. – 2012. – T.520. – C. 49-56.
Torres Y. et al. Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques //Materials Science and Engineering: C. – 2014. – Т. 37. – С. 148-155.
Lee J. H. et al. Characterization and deformation behavior of Ti hybrid compacts with solid-to-porous gradient structure //Materials & Design. – 2014. – Т. 60. – С. 66-71.
Ahmadi S., Sadrnezhaad S. K. A novel method for production of foamy core compact shell Ti6Al4V bone-like composite //Journal of Alloys and Compounds. – 2016. – Т. 656. – С. 416-422.
Murr L. E. et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies //Journal of Materials Science & Technology. – 2012. – Т. 28. – №. 1. –
С. 1-14.
Krishna B. V., Bose S., Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants //Acta biomaterialia. – 2007. – Т. 3. – №. 6. – С. 997-1006.
Yavari S. A. et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials //Journal of the mechanical behavior of biomedical materials. – 2015. – Т. 43. – С. 91-100.
Furumoto T. et al. Permeability and strength of a porous metal structure fabricated by additive manufacturing //Journal of Materials Processing Technology. – 2015. – Т. 219. – С. 10-16.
Heinl P., Mueller L., Koerner C., Singer R.F., Mueller F.A. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting //Acta Biomater. – 2008. – № 4. – С. 1536–1544.
Li S. J. et al. Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method //Acta biomaterialia. – 2014. – Т. 10. – №. 10. – С. 4537-4547.
Suard M. et al. Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by Electron Beam Melting //Additive Manufacturing. – 2015. – Т. 8. – С. 124-131.
Cheng X.Y. et al. // J.Mech. Behav. Biomed. Mater . – 2012. – № 16. – С. 153–162.
Hernández-Nava E. et al. The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing //Acta Materialia. – 2015. – Т. 85. – С. 387-395.
Tan X. et al. Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting //Acta Materialia. – 2015. – Т. 97. – С. 1-16.
Galarraga H. et al. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) //Materials Science and Engineering: A. – 2017. – Т. 685. – С. 417-428.
Gaytan S. M. et al. Advanced metal powder based manufacturing of complex components by electron beam melting //Materials technology. – 2009. – Т. 24. – №. 3. – С. 180-190.
Ikeo N., Ishimoto T., Nakano T. Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications //Journal of Alloys and Compounds. – 2015. – Т. 639. – С. 336-340.
Nakano T. et al //Proceedings of the 13th World Conference on Titanium, John Wiley & Sons. – 2016. – New Jersey. – C. 1679-1683.
Niinomi M. Recent metallic materials for biomedical applications //Metall. Mater. Tran. A. – 2002. – № 33. – 477.
Shah R. K., Sekulic D. P. Fundamentals of heat exchanger design. – John Wiley & Sons, 2003.
Ryan G., Pandit A., Apatsidis D. P. Fabrication methods of porous metals for use in orthopaedic applications //Biomaterials. – 2006. – Т. 27. – №. 13. – С. 2651-2670.
Singh R. et al. Titanium foams for biomedical applications: a review //Materials Technology. – 2010. – Т. 25. – №. 3-4. – С. 127-136.
Salvo L. et al. Processing and structures of solids foams //Comptes Rendus Physique. – 2014. – Т. 15. – №. 8-9. – С. 662-673.
Deshpande V. S., Fleck N. A., Ashby M. F. Effective properties of the octet-truss lattice material //Journal of the Mechanics and Physics of Solids. – 2001. – Т. 49. – №. 8. – С. 1747-1769.
Sun Y., Aindow M., Hebert R. J. The effect of recycling on the oxygen distribution in Ti-6Al-4V powder for additive manufacturing //Materials at High Temperatures. – 2018. – Т. 35. – №. 1-3. – С. 217-224.
Martin G. et al. Coupling electron beam melting and spark plasma sintering: A new processing route for achieving titanium architectured microstructures //Scripta Materialia. – 2016. – Т. 122. – С. 5-9.