INVESTIGATION OF ELECTRICAL AND THERMAL CONDUCTIVE PROPERTIES OF COMPOSITE HEATING ELEMENTS WITH FLAT ELECTRODES
Main Article Content
Abstract
The paper describes the manufacturing method and design of sandwich-like composite electric heating elements with flat electrodes based on synthetic polyurethane adhesives. Heating of the composite elements occurs through the thickness between the flat electrodes, to which electric voltage is supplied at locations protected from mechanical damage. This design ensures maximum durability of the heating elements against multiple penetrating damages.
To fabricate a sandwich-like composite structure resistant to mechanical damage, the following aspects were optimized: the type of flat electrodes (material and design features); the structure of intermediate layers to control the thickness of the heating element; and the composition and properties of the electrically conductive composite made from graphite and metal powders. Materials for the powders (copper and graphite), particle sizes, their ratios, and the mass fraction of the conductive composition in the polyurethane adhesive-based matrix with reinforcing synthetic layers were selected.
The main requirements for composite heating elements based on synthetic adhesives include: the ability to bond all flat components and intermediate layers; suitable electrical conductivity to ensure heating from a battery-type power source (12 V) up to about 40°C; uniform thickness of the heating elements, which determines the homogeneity of the generated thermal profile; and sufficient mechanical strength.
The developed composite sandwich heating elements powered by battery-type sources demonstrate the following technical characteristics: nominal supply voltage of 12 V, specific electrical power of 300–400 W/m², and a heating time to the working temperature (up to 40°C) of no more than 15 minutes (at an ambient temperature of 15°C).
Article Details
References
Kim T. Carbon fiber mats as resistive heating elements / T. Kim, D. D. L. Chung // Carbon. – 2003, Vol. 41, №12. – P. 2436-2440. – Режим доступу: https://doi.org/10.1016/S0008-6223(03)00288-4
Falzon B. G. Development and evaluation of a novel integrated anti-icing/de-icing technology for carbon fibre composite aerostructures using an electro-conductive textile / B. G. Falzon, P. Robinson, S. Frenz, B. Gilbert // Composites Part A: Applied Science and Manufacturing. – 2015. – № 68. – P. 323-335. – Режим доступу: https://doi.org/10.1016/j.compositesa.2014.10.023
Klingeler R. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery/ R. Klingeler, S. Hampel, B. Büchner // International journal of hyperthermia. – 2008. – Vol. 24, №6. – P. 496-505. – Режим доступу: https://doi.org/10.1080/02656730802154786
Philip B. Material and process optimization screen printing carbon graphite pastes for mass production of heating elements/ B. Philip, E. Jewell, P. Greenwood, C. Weirman // Journal of Manufacturing Processes. – 2016. – № 22. – P. 185-191. – Режим доступу: https://doi.org/10.1016/j.jmapro.2016.03.001
Колосов О. Технології композиційних матеріалів / О. Колосов // Київ: КПІ ім. Ігоря Сікорського, 2019. – 258 с. – Режим доступу: https://ela.kpi.ua/handle/123456789/30176
Свістільнік Р. Розробка технології електропровідних гібридних композиційних покриттів / Р. Свістільнік // Технології та інжиніринг. – 2022. – Том. 4, №9. – С. 60-70. – Режим доступу: https://doi.org/10.30857/2786-5371.2022.4.5
Mamunya Y. P. Thermal and electrical conductivity of the polymer-metal composites with 1D structure of filler formed in a magnetic field / Y. P. Mamunya, V. V. Levchenko, I. M. Parashchenko, E. V. Lebedev // Polymer J (Ukraine). – 2016. – Vol.38, №1. – P. 3-17. – Режим доступу: https://doi.org/10.15407/polymerj.38.01.003
Свістільнік Р. Ф. Вплив полімерних матриць на електричні властивості композитних покриттів / Р. Ф. Свістільнік, Т. Р. Федорів // Technologies and Engineering. –2023. – №5. – P. 115-122. – Режим доступу: https://doi.org/10.30857/2786-5371.2023.5.10
Бутенко О. О. Застосування графітів в електропровідних полімерних композитах/ О. О. Бутенко, О. В. Черниш, Ю. О. Кубай, В. Г. Хоменко, В. З. Барсуков, Я. А. Куриптя // Technologies and Engineering. – 2022. – №6. – C. 72-81. – Режим доступу: https://doi.org/10.30857/2786-5371.2022.6.7
Lyashenko Y. O. New approach to effective diffusion coefficient evaluation in the nanostructured two-phase media / Y. O. Lyashenko, O. Y. Liashenko, V. V. Morozovich // Applied Nanoscience. – 2019. – №9. – P. 1025-1036. – Режим доступу: https://doi.org/10.1007/s13204-018-0731-y
Behbahani A. F. Electrical percolation behavior of carbon fiber and carbon nanotube polymer composite foams: Experimental and computational investigations / A. F. Behbahani, G. H. Motlagh, M. Ziaee, G. Nikravan // Journal of Applied Polymer Science. –2015. – Vol. 132, №42. – Режим доступу: https://doi.org/10.1002/app.42685
Yat C. H. Investigation on buffon-laplace needle problem / C. H. Yat, F. P. Kiu, L. S. Him, L. K. C. Justin, T. S. Lam, C. Man // – 2021. – Режим доступу: https://hlma.hanglung.com/getattachment/f46f7ae5-2afb-4df5-996b-5eedd47996a3/17-hm_wyk.pdf
Arnow B. J. On Laplace's extension of the Buffon needle problem / B. J. Arnow // The College Mathematics Journal. – 1994. – Vol. 25, №1. – P. 40-43. – Режим доступу: https://doi.org/10.1080/07468342.1994.11973580